UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/8

BSc. /B.Ed. /B.A.S.S.

TITLE OF PAPER : ABSTRACT ALGEBRA

COURSE NUMBER : M 423

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Find all the monic irreducible polynomials of degree 2 over Z₃ [9]
 (b) Prove that every field is an integral domain [7]
 (c) State the Eisentein Criterion for irreducibility. [4]
 QUESTION 2
 (a) Which of the following are rings with the usual addition and multiplication
 i. {a + b√2, a, b ∈ Z} [5]
 ii. M₂(R) with zero determinant [5]
 (b) Factor the polynomial 4x² 4x + 8 as a product of irreducibles viewing it as an element
 - of the following integral domain

 i. $\mathbb{Z}[x]$
 - i. $\mathbb{Z}[x]$ ii. $\mathbb{Z}_{11}[x]$ [10]

QUESTION 3

3. (a) Find the greatest common divisor of the polynomials

$$f(x) = x^4 + 4x^3 + 7x^2 + 6x + 2$$
$$g(x) = x^3 + 4x^2 + 7x + 4$$

Over Q and express it as a linear combination of f(x) and g(x) [8]

- (b) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then N = R[6]
- (c) Describe all units in each of the following rings
 - i. **Z**₇

ii. $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ [6]

QUESTION 4

- 4. (a) State whether or not each of the given function v is an Euclidean valuation for the given integral domain.
 - i. The function v for $\mathbb Z$ given by $v(n)=n^2$ for non-zero $n\in\mathbb Z$
 - ii. The function of v of \mathbb{Q} given by v(a) = 50 for non-zero values $a \in \mathbb{Q}$ [8]
 - (b) Given that every element β of $E = F(\alpha)$ can be uniquely expressed in the form $\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \cdots + b \alpha^{n-1}$ where each $b_i \in F, \alpha$ algebraic over the field F^{n-1} and degree $(\alpha, F) \geq 1$. Show that if F is finite with q elements, then $F(\alpha)$ has q^n elements [6]
 - (c) State Kronecker's theorem. [Do not prove] [6

QUESTION 5

- 5. (a) Prove that, if D is an integral domain, then D[x] is also an integral domain [6]
 - (b) Use Fermats theorem to compute the remainder when 8¹⁰³ is divided by 13. [6]
 - (c) For each of the given algebraic number $\alpha \in C$, find irred (α, Q) and $\deg(\alpha, Q)$

i.
$$\sqrt{\frac{1}{3} + \sqrt{7}}$$

ii. $\sqrt{2} + i$ [8]

QUESTION 6

6. (a) Determine which of the following polynomial in $\mathbb{Z}[x]$ satisfy Eisenstein criterion for irreducibility over Q

i.
$$4x^{10} - 9x^3 + 24x - 18$$

ii. $2x^{10} + 25x^3 + 10x^2 - 30$ [10]

(b) Prove that every finite integral domain is a field. [10]

QUESTION 7

7. (a) Show that for a field F, the set of all matrices of the form

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ 0 & 0 \end{array}\right) \quad a_{ij} \in F$$

[6]

is a right ideal but not a left ideal of $M_2(F)$.

(b) Let $\varphi_{\alpha}: \mathbb{Z}_7[x] \to \mathbb{Z}_7$. Evaluate each of the following for the indicated evaluation homomorphism

i.
$$\varphi_5 \left[(x^3 + 2)(4x^2 + 3)(x^7 + 3x^2 + 1) \right]$$
 [5]

ii.
$$\varphi \left[3x^{106} + 5x^{99} + 2x^{53} \right]$$
 [5]

(c) Show that the rings $3\mathbb{Z}$ and $5\mathbb{Z}$ are not isomorphic [5]