UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008

BSc. / BEd. / B.A.S.S. IV

TITLE OF PAPER

: NUMERICAL ANALYSIS II

COURSE NUMBER

: M 411

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

 (a) Write the following differential equation as an equivalent system of first order equations.
 [4 marks]

$$y'' = y'(1 - y^2) - y$$
 subject to $y(0) = 1$, $y'(0) = 2$,

(b) Use finite differences with step size h = 0.5 and a centred approximation to approximate the solution of the following differential equation at x = 0.5.
[6 marks]

$$y'' = -4$$
 subject to $y(0) = 1$ and $y(1) = 1$.

(c) Use four terms of the Taylor series expansion to solve the following system of differential equations. [10 marks]

$$\begin{array}{rcl} \frac{dx}{dt} & = & x(1-y) \;, & x(0)=2 \\ \frac{dy}{dt} & = & y(x-1) \;, & y(0)=2 \;. \end{array}$$

QUESTION 2

2. Consider the initial value problem

$$\frac{dy}{dx} = 2y^2(x-1) \text{ with } y = -\frac{1}{2} \text{ when } x = 2$$

- (a) Use the Taylor expansion of degree 3 for y about x=2 to approximate the value for y(2.2). [8 marks]
- (b) Use Euler's method to approximate y(2.2) given that y(2) = -0.5 and a step size of h = 0.1.
- (c) Compare the solution obtained in (a) and (b) against the exact solution of the differential equation. [6 marks]

3. (a) Solve the following Poisson equation over the rectangular region $\{(x,y):\ 0\leq x\leq 1.5,\ 0\leq y\leq 1\} \text{ with } h=k=0.5.$

$$u_{xx} + u_{yy} = 12xy$$

subject to

$$u(x,0) = 0$$
, $u(x,1) = 6x$; $0 \le x \le 1.5$; $u(0,y) = 0$, $u(1.5,y) = 3y^2$; $0 \le y \le 1$

[10 marks]

(b) Consider the following differential equation system

$$\frac{\partial u}{\partial t} - (1+x)\frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 \le x \le 1, \qquad t > 0$$
$$u(0,t) = 0, \qquad u(1,t) = 0, \qquad t > 0$$
$$u(x,0) = 1 - 2x, \qquad 0 \le x \le 1$$

Use the implicit Backward difference in time and central difference in space (BTCS) scheme with step sizes h=k=0.25 to show that the problem can be written in matrix form as

$$\mathbf{u}_j = A\mathbf{u}_{j+1}$$

where

$$A = \left(\begin{array}{rrr} 11 & -5 & 0 \\ -6 & 13 & -6 \\ 0 & -7 & 15 \end{array}\right)$$

[10 marks]

4. Use the 4th-order Runge-Kutta method with h = 0.1 to solve the following initial value problem to estimate the values of y(0.1) and y'(0.1);

$$y'' - 2y' + 2y = e^{2x} \sin x$$

subject to

$$y(0) = -0.4$$
 , $y'(0) = -0.6$

[20 marks]

QUESTION 5

5. (a) Apply the modified Euler method to solve the following initial value problem

$$y'' = -y^2 + y' + x$$

subject to

$$y(0) = 1$$
, $y'(0) = 2$

with step size h=0.1 to obtain an approximation to y(0.1) and y'(0.1) [10 marks]

(b) For Chebyshev polynomials, prove each of the following statements:

$$(T_i, T_j) = \begin{cases} 0, & i \neq j \\ \pi, & i = j = 0 \\ \frac{\pi}{2}, & i = j > 0 \end{cases}$$

[10 marks]

6. (a) Find the second degree least-squares polynomial approximation of the form $P_2(x) = a_o + a_1 x + a_2 x^2$. that best fits the through the following experimental data.

[10 marks]

(b) Discuss consistency, zero-stability and convergence of the linear multi-step method

$$y_{n+2} = 2y_n - y_{n+1} + \frac{h}{2} \{5f_{n+1} + f_n\}.$$

[10 marks]

QUESTION 7

7. Consider the parabolic differential equation

$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 \le x \le 1, \quad t > 0$$
$$u(0, t) = 0, \quad u(1, t) = 0, \quad t > 0$$
$$u(x, 0) = \cos 2\pi x, \quad 0 \le x \le 1$$

If an $O(k^2 + h^2)$ numerical method is constructed using the central difference quotient to approximate u_t and the usual difference quotient to approximate u_{xx} ,

- (a) Write down the finite difference scheme for the problem. [10 marks]
- (b) Show that the method has the matrix form

$$\mathbf{u}^{(j+1)} = \mathbf{u}^{(j-1)} + A\mathbf{u}^{(j)}$$
 for each $j = 0, 1, 2, ...$

where $\mathbf{u}^{(j)} = (u_{1,j}, u_{2,j}, \dots, u_{m-1,j})^T$ and A is a tridiagonal matrix. [10 marks]