# UNIVERSITY OF SWAZILAND

## SUPPLEMENTARY EXAMINATIONS 2007/8

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER

: DYNAMICS II

COURSE NUMBER

: M 355

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

Seven QUESTIONS.

2. ANSWER ANY Five QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) If the Hamiltonian  $H = \sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha} - L$  is expressed as a function of the coordinates  $q_{\alpha}$  and the momenta  $p_{\alpha}$  and the time t, prove that

$$\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}, \quad \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}, \quad \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}.$$
 (5 marks)

(b) Consider a dynamical system for which the kinetic energy T and potential energy V are represented by the expressions

$$T=rac{1}{2}ma^2(5\dot{q}_1^2+2\dot{q}_1\dot{q}_2+\dot{q}_2^2), \quad V=rac{1}{2}mga(3q_1^2+q_2^2)$$

- (i) Find the expression for the Hamiltonian of the system (10 marks)
- (ii) Use the Hamiltonian to prove that the equations of motion for the system are

$$4a\ddot{q}_1 + 3gq_1 - gq_2 = 0$$

$$4a\ddot{q}_2 - 3gq_1 + 5gq_2 = 0.$$
 (5 marks)

## QUESTION 2

- (a) Prove that the transformation given by  $P = \ln \sin p$ ,  $Q = q \tan p$ , is a canonical transformation by showing that pdq PdQ is an exact differential, [10marks]
- (b) Find the function which optimizes

$$I = \int_{x=0}^{1} (y + y'^2)$$

for the case when

$$y(0) = 1, \quad y(1) = 2.$$
 [10 marks]

(a) Given that

$$A_1 = \frac{1}{4}(x^2 + p_x^2 - y^2 - p_y^2), \qquad A_2 = \frac{1}{2}(xy + p_x p_y)$$
 $A_3 = \frac{1}{2}(xp_y - yp_x), \qquad A_4 = x^2 + y^2 + p_x^2 + p_y^2$ 

Evaluate the following Poisson brackets

(i) 
$$[A_1, A_2]$$
 [3 marks]

(ii) 
$$[A_2, A_3]$$
 [3 marks]

(iii) 
$$[A_1, A_4]$$
 [2 marks]

(b) Prove that if the function F in the integral

$$I = \int_{a}^{b} F(x, y, y') dx$$

is independent of x, then the integral is an extremum if

$$F - y'F_{y'} = c$$

where c is a constant.

[5marks]

(c) Using this result show that the extremum of the integral

$$\int_{y=0}^{y_0} \frac{\sqrt{1 + (y')^2}}{\sqrt{y}} dx$$

satisfies the differential equation

$$1 + (y')^2 + 2yy'' = 0$$

[7 marks]

(a) Prove that if the transformation equations are given by  $\mathbf{r}_{\nu} = \mathbf{r}_{\nu}(q_1, q_2, \dots, q_n)$  i.e do not involve the time t explicitly, (i) then the kinetic energy can be written as

$$T = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} a_{\alpha\beta} \dot{q}_{\alpha} \dot{q}_{\beta}$$

where  $a_{\alpha\beta}$  are functions of  $q_{\alpha}$ 

[5 marks]

and

(ii) 
$$\frac{d}{dt} \left( \frac{\partial r_{\nu}}{\partial q_{\alpha}} \right) = \frac{\partial \dot{r}_{\nu}}{\partial q_{\alpha}}.$$
 [5 marks]

(b) For a certain dynamical system the kinetic and potential energy are given by

$$T = \frac{1}{2} \left( (1+2k)\dot{\theta}^2 + 2\dot{\theta}\dot{\phi} + \dot{\phi}^2 \right)$$
$$V = \frac{n^2}{2} \left( (1+k)\theta^2 + \phi^2 \right)$$

where  $\theta$  and  $\phi$  are generalized coordinates and n, k are positive constants. Write down Lagrange's equations of motion and deduce that

$$(\ddot{\theta} - \ddot{\phi}) + n^2 \left(\frac{1+k}{k}\right) (\theta - \phi) = 0.$$

[10marks]

(a) A particle of mass m moves in one dimension such that it has the Lagrangian

$$L = \frac{m^2 \dot{x}^4}{12} + m \dot{x}^2 V(x) - V^2(x),$$

where V is some differentiable function of x. Show that the equation of motion reduces to

$$\left(m\ddot{x} + \frac{dV}{dx}\right)\left(m\dot{x}^2 + 2V(x)\right) = 0.$$

[5 marks]

(b) Show that Euler's equation for the functional

$$I = \int_{x=a}^{b} F(x, y, y', y'') dx$$

is given by

$$\frac{d^2}{dx^2}\left(\frac{\partial F}{\partial y''}\right) - \frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) + \frac{\partial F}{\partial y} = 0.$$

[15marks]

- (a) Define the Poisson bracket [f,g] of two dynamical variables which are functions of the generalized coordinates  $q_{\alpha}$  and generalized momenta  $p_{\alpha}$  and time t. [2 marks]
- (b) Show that if f is a function of  $p_{\alpha}$ ,  $q_{\alpha}$  and t and H is the Hamiltonian, then

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + [H, f]$$

[4 marks]

- (c) Prove that if the function f does not contain t explicitly, then f is conserved if [H,f]=0. [4 marks]
- (d) The Hamiltonian of a two-dimensional harmonic oscillator of unit mass is given by

$$H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{2}\omega^2(q_1^2 + q_2^2)$$

where  $\omega$  is a constant. Given that

$$A = q_1 p_2 - q_2 p_1$$
 and  $B = \omega q_1 \sin \omega t + p_1 \cos \omega t$ 

(i) Show that both A and B are constants of motion.

[7 marks]

(ii) Is A - B a constant of motion?

[3 marks]

- (a) Show, using first principles that the transformation  $P = \frac{1}{2}(p^2 + q^2)$ ,  $Q = \arctan(\frac{q}{p})$  is canonical. [13 marks]
- (b) The kinetic and potential energy of a certain system are given by

$$T = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2\sin^2\alpha)$$
$$V = mgr\cos\alpha$$

where  $\alpha$  is a constant. Use the Hamiltonian formulation to show that the angular momentum  $p_{\phi}$  is conserved and is given by  $p_{\phi} = mh \sin^2 \alpha$  where  $h = r^2 \dot{\phi}$  is a known constant in the theory of forces. [7 marks]