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QUESTION 1

n

(a) If the Hamiltonian H = Z Pafa — L is expressed as a function of the coordinates

a=1
go and the momenta p, and the time £, prove that

_oH . _ _OH OH 0L
T opn P°T "o ot ot

(b) Consider a dynamical system for which the kinetic energy T and potential energy

da (5 marks)

V are represented by the expressions
1 . . . 1
T= §ma2(5qf +241G2 + 43), V = §mga(3qf +q3)

(i) Find the expression for the Hamiltonian of the system (10 marks)

(ii) Use the Hamiltonian to prove that the equations of motion for the system are

4ag, + 3991 —g9q2 = O

4ags — 39q1 + 592 = 0. (5 marks)

QUESTION 2

(a) Prove that the transformation given by P = Insinp, Q = gtanp, is a canonical

transformation by showing that pdqg — PdQ is an exact differential, [10marks]

(b) Find the function which optimizes

I=/1 (y+v?)

=0

for the case when

y(0) =1, y(1)=2. [10 marks]




QUESTION 3

(a) Given that

1 1
Av=7(@+p -y’ —p), A= 5(zy+papy)

1
As = 5(apy —ypa),  Ag= z? +y° + p2 +p’

Evaluate the following Poisson brackets

(1) [Al, Ag] [3 marks]
(if)  [As, Ag] [3 marks]
(i)  [Aj, A4 [2 marks]

(b) Prove that if the function F' in the integral

b
1= [ Fe,y,y)dz

is independent of z, then the integral is an extremum if

F — ’y,Fyl =cC
where c is a constant. [5marks]

(c) Using this result show that the extremum of the integral

/yo V1t (y’)zd

=0 \/ﬂ

x

satisfies the differential equation

14+ () +2yy" =0

[7 marks]




QUESTION 4

(a) Prove that if the transformation equations are given by r, = r,(q1,42,---,n)

i.e do not involve the time t explicitly, (i) then the kinetic energy can be written as

n

n
T=> 3 aasdais

a=1p=1
where a,s are functions of g, [5 marks]
and
d v "y
(i) — (g;ﬁ) - gga. [5 marks]

(b) For a certain dynamical system the kinetic and potential energy are given by

1 . L.
T = ((1 + 2k)6 + 206 + %)

)

1% (1 + k)62 + ¢*)

where 8 and ¢ are generalized coordinates and n, k are positive constants. Write down

Lagrange’s equations of motion and deduce that

(6 — ) +n? (1—’,:—’“> (6—¢)=0.

[10marks]




QUESTION 5

(a) A particle of mass m moves in one dimension such that it has the Lagrangian

m2i,4

12

where V is some differentiable function of z. Show that the equation of motion re-

L= +mi*V(z) — Vi(z),

duces to

(mi’: + ﬂ) (ma?+2V(z)) = 0.

dz
[5 marks]
(b) Show that Euler’s equation for the functional
b
I=/ F(z,y,y,y")dz
r=a
is given by
d*> (OF d (OF + OF 0
dz? \ 9y" dz \ 9y’ oy
[15marks]




QUESTION 6

(a) Define the Poisson bracket [f, g] of two dynamical variables which are functions
of the generalized coordinates g, and generalized momenta p, and time t. [2 marks]

(b) Show that if f is a function of p,, ¢, and ¢t and H is the Hamiltonian, then

& _of

dt ot + [, f]

[4 marks]
(c) Prove that if the function f does not contain ¢ explicitly, then f is conserved if
H, fl=0. [4 marks)
(d) The Hamiltonian of a two-dimensional harmonic oscillator of unit mass is given by

1 1
H = 5(pi+p3) + 50°(¢1 + @)

where w is a constant. Given that
A=qp; — @p1 and B = wgq;sinwt+ p;coswt

(1) Show that both A and B are constants of motion. [7 marks]

(ii) Is A — B a constant of motion ? [3 marks]




QUESTION 7

(a) Show, using first principles that the transformation P = $(p*+¢?),Q = arctan(1)
is canonical. [13 marks]

(b) The kinetic and potential energy of a certain system are given by

1 :
T = Em(r’2 + r2¢? sin® o)

V =mgrcosa

where « is a constant. Use the Hamiltonian formulation to show that the angular

momentum py is conserved and is given by py = mh sin® o where h = r2<i> is a known

constant in the theory of forces. [7 marks]




