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QUESTION 1

(a) Prove that if the transformation equations are given by r, =r,(q1,¢2,...,¢xn)

i.e do not involve the time ¢ explicitly, (i) then the kinetic energy can be written as

T= Z Z aaﬂq.a(jﬂ

a=1 =1
where aqpg are functions of g, [5 marks]
and
. d (0O, 0Or,
(ii) o ( an) = 3. [5 marks]

(b) For a certain dynamical system the kinetic and potential energy are given by

1 . L.
T = 5((1+2k)92+2¢9¢>+¢2)

V= ”; ((1+k)6% + ¢%)

where 0 and ¢ are generalized coordinates and n, k are positive constants. Write down

Lagrange’s equations of motion and deduce that

(é%$)+n2(1—“,:—k)<9—¢)=0-

[10marks]



QUESTION 2

Two particles of masses m; and m;, are connected by an inextensible string of negli-
gible mass which passes over a fixed frictionless pulley of negligible mass.

(a) Use this system to show that the expressions

()

H=T+V
and (ii)
H= Zpaq.a -L
are equivalent. [10marks]
(b) Find the acceleration of m;;
(i) using lagrange’s equations. [5marks]
(ii) using Hamilton’s equations. [5marks]



QUESTION 3

(a) Show that if H, the Hamiltonian, is independent of time ¢ explicitly, then

(i) H is a constant; (56 marks]
(ii) and that if qa% = 2T, where L is the Lagrangian and T is the kinetic energy
then H is equal to the total energy of the system. [4marks)
(b) Consider a dynamical system for the kinetic energy T and potential energy V

represented by the expressions
1 . L
T = §ma2(592 + 200 + ¢?)
1
V = ~mga(36* + ¢%)

2

where m, g and a are constants and 8 and ¢ are the generalized coordinates.

(i) Find an expression for the Hamiltonian of the dynamical system. [6marks]

(ii) Write down Hamilton’s equation of motion. [3marks]

(iii) Write down the equations of motion of the system. [2marks|
QUESTION 4

Prove that the transformation given by P = Insinp, () = gtan p, is a canonical trans-

formation,
(a) by showing that pdg — PdQ is an exact differential, [5marks]]
(b) from first principles. ' [15marks]



QUESTION 5

The kinetic energy T and the potential energy V of a system are given by

2T = pi + p + P}
2V = p(g} + 05 + g3)
Where g, are the generalized coordinates and p,, @ = 1, 2, 3 the generalized momenta.
(a) Write down an expression for the Hamiltonian of the system. [2 marks]

(b) Write down Hamilton’s equations of motion. [4 marks]|

(c) It can be shown that the system has the following six integrals:

F1 = gaps — qap2 G1 = gy cos ut — py sin pt,

Fy = g3py — qips, Gy = ugs cos ut — po sin ut

F3 =qp, — ¢opa G3 = pqs cos ut — pa sin ut.

Find

0 ¢ [4 marks]
(ii) [Gh, H] : (2 marks]
(1) [F3, H] [2 marks]
(iv) [F1, Ge] (2 marks]
W)[[F1, F3), H] [4 marks)



QUESTION 6

(a) Prove that if the function F in the integral

b
I= / F(z,y,y')dz

is independent of z, then the integral is an extremum if

F—y’Fy' =cC

where c is a constant. [5marks]
(b) Using this result or otherwise;

(i) show that the extremum of the integral

/‘yo 14+ (y’)zd
=0 VY

T

satisfies the differential equation

1 + (yl)2 4 zyyu =0

(10 marks]
(ii) find the curve which gives an extreme value for the functional
I 1 "2 d
= +1
(@) +1)dz
when y(0) = 1 and y(1) is not specified. [5 marks)



QUESTION 7

(a) Show that Euler’s equation for the functional
b
I=/ F(z,y,y,y")dz

is given by

& (OF\ _ 4 (0F\ oF
dz? \ oy" dz \ oy’ oy

[15marks]
(b) If [F, G] is the poison bracket, prove that
o} oF oG
2ira)= [E,G} n {F W] .
[5marks]
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