UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007/2008

B.Sc. / B.Ed. / B.A.S.S. III

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER

: M331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Prove the triangle inequality in \mathbb{R} . [4]
- (b) Let A be a set of real numbers which is bounded below. Show that A has only one infimum. [4]
- (c) Let A and B be nonempty subsets of \mathbb{R} . Prove that if $A \subseteq B$ and B is bounded below, then $\inf(A) \ge \inf(B)$.
- (d) State and prove the Archimedian Property of real numbers. [6]

QUESTION 2

- (a) (i) What do we mean when we say that a sequence $\{a_n\}$ of real numbers is convergent? [2]
 - (ii) Using only the definition, show that $\lim_{m\to\infty} \frac{m+2}{2m+3} = \frac{1}{2}$. [6]
- (b) State and prove the Squeeze Theorem. [6]
- (c) (i) What do you understand by $\lim_{n\to\infty} a_n = +\infty$? [2]
 - (ii) Show that $\lim_{n\to\infty} \frac{n^2}{2n+2} = +\infty$. [4]

- (a) (i) What do you understand by an increasing sequence of real numbers? [2]
 - (ii) Prove that if a sequence $\{a_n\}$ is increasing and bounded above, then

$$\lim_{n\to\infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

[5]

(iii) Show that the sequence defined by the recurrence relation

$$x_1 = 1;$$
 $x_{n+1} = \sqrt{1 + x_n}$ $\forall n \in \mathbb{N}$

is convergent and find its limit.

[6]

(b) Prove that every Cauchy sequence of real numbers is convergent. [7]

QUESTION 4

- (a) What do you understand by uniform continuity of a function f defined on an interval $I \subseteq \mathbb{R}$? [2]
- (b) Decide whether or not each of the following functions is uniformly continuous on the given intervals.

(i)
$$f(x) = \sin \frac{1}{x}$$
 on $\left(0, \frac{2}{\pi}\right]$. [3]

(ii)
$$f(x) = \sin x$$
 on $(-\infty, \infty)$. [3]

- (c) Prove that if f is a continuous function on a closed interval [a, b], then f is also uniformly continuous on [a, b]. [8]
- (d) (i) What is a Lipschitz function? [1]
 - (ii) Show that if $f: I \longrightarrow \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on I. [3]

- (a) (i) What do you understand by a limit point of a set $S \subseteq \mathbb{R}$? [2]
 - (ii) Find all limit points of the set Q (the set of all rational numbers). [3]
- (b) Prove that a set $S \subset \mathbb{R}$ is closed if and only if no point in the complement S^c of S is a limit point of S.
- (c) Prove that every infinite bounded set $S \subset \mathbb{R}$ has a limit point. [8]
- '(d) Prove that every open set in R is the union of open intervals. [4]

QUESTION 6

- (a) Prove that every continuous function in a closed interval [a,b] is integrable. [7]
- (b) Let $f:[a,b] \longrightarrow \mathbb{R}$ be an integrable function and let f=g'. Show that

$$\int_a^b f \, \mathrm{d}x = g(b) - g(a).$$

[8]

(c) Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous and let $\varphi:[1,2] \longrightarrow [0,1]$ be differentiable. Show that the function $\psi(t) = \int_0^{\varphi(t)} f(x) dx$ is differentiable and express $\psi'(t)$ in terms of f and φ' .

(a) Find

$$\lim_{x \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} = 0,$$

if it exists.

[6]

(b) Show that the function

$$f(x) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous at (0,0).

[8]

(c) Show that the function

$$f(x) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

is not differentiable at (0,0).

[6]

END OF EXAMINATION