UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/2008

B.Sc. / B.Ed. / B.A.S.S. III

TITLE OF PAPER

: Real Analysis

COURSE NUMBER

M331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Show that if x and y are real numbers with x < y, then there exists an irrational number z such that x < z < y. [4]
- (b) Let S be a nonempty subset of \mathbb{R} . Prove that S has a supremum K if and only if:
 - (i) $s \leq K$ for all $s \in S$; and
 - (ii) for every $\varepsilon > 0$, there exists $s_0 \in S$ such that $K \varepsilon < s_0$. [6]
- (c) Let S be a nonempty subset of \mathbb{R} and let a be a real number. Define $a+S=\{a+s:s\in S\}$. Prove that $\sup(a+S)=a+\sup(S)$. [10]

QUESTION 2

- (a) (i) Give the definition of a convergent sequence of real numbers. [2]
 - (ii) Using only the definition, show that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right) = 1.$ [6]
- (b) Prove that if a sequence $\{a_n\}$ of real numbers is convergent, then its limit is unique. [6]
- (c) Prove that every convergent sequence of real numbers is bounded. Give an example to illustrate why the converse is not always true. [6]

- (a) (i) What do you understand by a monotone sequence? [2]
 - (ii) Prove that if a sequence $\{a_n\}$ of real numbers is increasing and bounded above, then it converges to its least upper bound. [5]
 - (iii) Show that the sequence defined by the recurrence relation

$$y_1 = 1;$$
 $y_{n+1} = \frac{1}{4} (2y_n + 3) \, \forall n \in \mathbb{N}$

is convergent and find its limit.

[6]

(b) (i) What is a Cauchy sequence of real numbers?

- [2]
- (ii) Prove that every convergent sequence of real numbers is a Cauchy sequence. [5]

- (a) (i) Give the Cauchy definition of the limit of a function. [2]
 - (ii) Using the definition in (i), find

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6.$$

[4]

(b) Let a be an irrational number. Prove that there is a sequence $\{r_n\}$ of rational numbers such that

$$\lim_{n\to\infty}\{r_n\}=a.$$

[4]

- (c) (i) Give the Heine definition of the continuity of a function at a point x_0 in its domain. [3]
 - (ii) Let

$$f(x) = \begin{cases} 2 & \text{if } x \text{ is irrational} \\ -2 & \text{if } x \text{ is rational} \end{cases}$$

Show that f(x) is discontinuous.

[7]

- (a) (i) What do you understand by an open interval? [2]
 - (ii) Show that the interval [0,1] and the set \mathbb{Q} of rational numbers are not open. [3]
- (b) (i) Give an example to illustrate that the intersection of an infinite family of open sets may not be open. [2]
 - (ii) Prove that any union of open sets is open and that any intersection of closed sets is closed. [5]
- (c) Prove that if \mathcal{H} is an open covering of a closed and bounded subset S of \mathbb{R} , then S has an open covering $\tilde{\mathcal{H}}$ consisting of finitely many open sets belonging to \mathcal{H} .

QUESTION 6

- (a) (i) Define the Riemann integral.
 - (ii) Write down sufficient conditions for a bounded function $f:[0,1] \longrightarrow \mathbb{R}$ to be integrable.

[4]

[4]

(b Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function. Prove that f is integrable if and only if for any $\varepsilon > 0$, there exists a partition P such that

$$0 \le U(f, P) - L(f, P) < \varepsilon$$
,

where P is a partition of [a, b], U(f, P) is the upper sum of f over P and L(f, P) is the lower sum of f over P.

(c) Let $f:[a,b] \longrightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is irrational} \\ -1 & \text{if } x \text{ is rational} \end{cases}$$

Show that f is not Riemann integrable but |f| is.

(d) Define the Riemann-Stietjels integral.

[3]

QUESTION 7

(a) Show that

$$\lim_{x \to (0,0)} xy \frac{x^2 - y^2}{x^2 + y^2} = 0.$$

[6]

(b) Show that the function

$$f(x) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

is continuous at (0,0).

[8]

(c) Show that the function

$$f(x) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

is not differentiable at (0,0).

[6]

END OF EXAMINATION