UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/8

BSc. /B.Ed. /B.A.S.S.

TITLE OF PAPER

: ABSTRACT ALGEBRA I

COURSE NUMBER : M 323

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Prove that a group of prime order has no proper subgroup [6] (b) Show that if (a, m) = 1 and (b, m) = 1 then (ab, m) = 1[6] (c) Prove that every group of prime order is cyclic [8] **QUESTION 2** 2. (a) For each binary operation * defined on a set G, say whether or not * gives a group structure of the set i. Define * on \mathbb{Q}^+ by $a*b = \frac{ab}{2} \ \forall a,b \in G = \mathbb{Q}^+$ ii. Define on $\mathbb R$ by $a*b=ab+a+b \quad \forall a,b\in G=\mathbb R$ [10] (b) Prove that the binomial coefficient $pC_r = \begin{pmatrix} p \\ r \end{pmatrix}$ with 0 < r < p is divisible by the positive prime p. [4] (c) Show that \mathbb{Z}_6 and S_3 are NOT isomorphic and that \mathbb{Z} and $2\mathbb{Z}$ are isomorphic. [6] QUESTION 3 3. (a) i. State Cayley's theorem [8] ii. Let $(\mathbb{R}^+,0)$ be the multiplicative group of all positive integers and $(\mathbb{R},+)$ be the additive group of real numbers. Show that (\mathbb{R}^+,\cdot) is isomorphic to $(\mathbb{R},+)$ [6] (b) Find the number of generators in each of the following i. a cyclic group of order 30 ii. a cyclic group of order 42 [4](c) Determine the right cosets of $H = \{0, 4, 8, 12\}$ in \mathbb{Z}_{16} [6]

QUESTION 4

- 4. (a) Prove that every subgroup of a cyclic group is cyclic. [10]
 (b) Express d = (211,130) as an integral linear combination of 211 and 130 [5]
 - (c) Solve $3x \equiv 5 \pmod{11}$ [5]

QUESTION 5

- 5. (a) Prove that a non-abelian group of order 2p, p prime contains at least one element of order p.
 - (b) Consider the following permutations in S_6

Compute

- i. $\lambda \mu$
- ii. μ^2
- iii. μ^{-1}
- iv. μ^{-2}

v.
$$\lambda \mu^2$$

(c) Write the permutations in (b) as a product of disjoint cycles in S_6 [4]

QUESTION 6

6. (a) Define a normal subgroup of a group [4]
(b) Verify that the subgroup N = {(1), (123), (132)} is a normal subgroup of the group S₃ [6]
(c) For Z₁₈, find all the subgroups and give a lattice diagram [10]

QUESTION 7

- 7. (a) Let G and H be groups, $\varphi: G \to H$ be an isomorphism of G and H and let e be the identity of G, prove that $(e)\varphi$ is identity in H and that $[(a)\varphi]^{-1}=(a^{-1})\varphi \quad \forall \ a\in G$ [10]
 - (b) Prove that if $(ab)^{-1} = a^{-1}b^{-1} \quad \forall a, b \in G$, where G is a group then G is abelian [5]
 - (c) Show that \mathbb{Z}_p has no proper subgroup if p is a prime number. [5]