# University of Swaziland



# **Supplementary Examination 2008**

## BSc III, Bass III, BEd III

Title of Paper : Complex Analysis

Course Number

: M313

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

#### Question 1

(a) Find all roots of the polynomial

$$P(z) = z^4 + z^2 + 1$$

and express in the form a + ib.

[8 marks]

- (b) Consider the real function  $u = e^{1+2y} \cos 2x$ .
  - (i) Show that u is harmonic.

[4 marks]

(ii) Find the harmonic conjugate of u.

[4 marks]

(iii) Hence find the analytic complex function f(z) = u + iv and express in terms of z. [4 marks]

## Question 2

(a) Prove that

$$\frac{1}{2}\sin\alpha + \frac{1}{2^2}\sin2\alpha + \frac{1}{2^3}\sin3\alpha + \dots = \frac{2\sin\alpha}{5 - 4\cos\alpha}.$$

[8 marks]

(b) Use the theory of residues to evaluate

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2+1)(x^2+4)}.$$
 [12 marks]

## Question 3

- (a) Consider the complex function  $f(z) = \frac{z-i}{z+i}$ .
  - (i) Find the first five non-zero terms of the Taylor expansion of f(z) about z = i. [10 marks]
  - (ii) Determine the radius of convergence of the series obtained in (i). [2 marks]

(b) Evaluate

$$\int_{-1-i}^{1+i} \left(\frac{\bar{z}}{z^2}\right) \mathrm{d}z$$

along the circular path  $x^2 + y^2 = 2$ .

[8 marks]

Question 4

(a) Evaluate

$$\lim_{z \to 0} \left( \frac{\sin z}{z} \right)^{1/z^2}$$
 [7 marks]

(b) Solve for all values of z satisfying

$$e^{1-2iz} = 1 - i\sqrt{3},$$

and express in the form a + ib.

[7 marks]

(c) Evaluate  $\int_0^{\pi} z e^{-iz} dz$  along any path.

[6 marks]

Question 5

- (a) Find two Laurent series expansions of  $f(z) = \frac{1}{z(4-z^2)}$  in powers of z, stating the region of validity in each case.

  [5 marks, 5 marks]
- (b) Use the theory of residues to evaluate

$$\int_0^{2\pi} \frac{\mathrm{d}\alpha}{2 + \sin\alpha}.$$
 [10 marks]

#### Question 6

(a) Derive the formula

$$\sec^{-1} z = -i \ln \left( \frac{1 + \sqrt{1 - z^2}}{z} \right), \qquad [10 \text{ marks}]$$

where the principal branch is chosen to be the one for which  $\sec 0 = 1$ .

(b) Evaluate

$$\int_{\Lambda} \frac{z^2 - \cos^2 z}{(z^2 - 9)(z^2 + \pi^2)} dz,$$

where  $\Lambda$  is the circle |z|=2 traversed once positively. null [7 marks]

(c) Find the principal value of  $\omega = \left(\frac{2i}{i - \sqrt{3}}\right)^i$  and express in the form a + ib. [6 marks]

#### Question 7

(a) Your friend claims that

If  $\int_{\Lambda} f(z) dz = 0$ , it implies that the function f(z) is analytic everywhere on and inside the simple closed curve  $\Lambda$ .

Is this statement right or wrong. Discuss. [10 marks]

(b) Evaluate

$$\oint_{\Gamma} \frac{\cos 2z}{z^{2n+1}} \, \mathrm{d}z, \qquad [10 \text{ marks}]$$

where  $\Omega$  is the unit circle |z|=1 traversed once positively, and  $n\in\mathbb{Z}^+$