University of Swaziland

Final Examination, April/May 2008

BSc III, Bass III, BEd III

Title of Paper : Complex Analysis

Course Number

: M313

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) You are given that $z = -1 + i\sqrt{2}$ is a root of the polynomial

$$P(z) = z^4 + z^3 + 2z^2 - z + 3.$$

Find the other 3 roots of P(z), expressing your answers in the form a + ib. [8 marks]

- (b) Consider the real function $u = e^y(x \cos x + y \sin x)$.
 - (i) Show that u is harmonic. [4 marks]
 - (ii) Find the harmonic conjugate of u. [4 marks]
 - (iii) Hence find the analytic complex function f(z) = u + iv and express in terms of z. [4 marks]

Question 2

- (a) State Cauchy's Integral Formula in its most general form. [4 marks]
- (b) Prove that

$$\frac{1 - (\cos \alpha + i \sin \alpha)^{6}}{1 + (\cos \alpha + i \sin \alpha)^{6}} = -i \tan 3\alpha.$$
 [6 marks]

(c) Use the theory of residues to evaluate

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{\frac{5}{4} + \cos\theta}.$$
 [10 marks]

Note: Throughout this paper the variable z = x + iy is complex, with real x and y, and $i^2 = -1$.

Question 3

- (a) Give a full statement of the Cauchy-Riemann equations in terms of Cartesian coordinates. [4 marks]
- (b) The Cauchy-Riemann equations in terms of polar coordinates are given by

$$u_r = \frac{1}{r}v_\theta, \quad v_r = -\frac{1}{r}u_\theta.$$

Use these to show that the formula $f'(z) = u_x + iv_x$ takes the form

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$

in polar.

[8 marks]

(c) Is the set of values of $\ln \left[\left(1 + i\sqrt{3} \right)^3 \right]$ the same as that for $3 \ln \left(1 + i\sqrt{3} \right)$? [8 marks]

Question 4

(a) Evaluate

$$\lim_{z \to 0} \frac{\bar{z}}{z}$$
 [4 marks]

(b) Consider the complex function $f(z) = i^z$.

Determine all values of z for which i^z is a purely real number. [8 marks]

(c) Solve for the principal value of

$$\tanh z = i\sqrt{3},$$

and express in the form a + ib.

[8 marks]

Question 5

- (a) Find the Laurent expansion of $f(z) = \frac{7}{(2z-1)(z+3)}$ valid in the region
 - (i) $\frac{1}{2} < |z| < 3$,

[5 marks]

(ii) $|z+3| > \frac{7}{2}$.

[5 marks]

(b) Consider the complex function

$$\mathcal{H}(z) = \int_{\Gamma} rac{\mathrm{Ln}z}{z^2} \mathrm{d}z,$$

where Γ is any circle |z|=R>1 traversed once in the positive sense.

- (i) Show that $|\mathcal{H}(z)| < 2\pi(\pi + \ln R)/R$. [7 marks]
- (ii) Hence demonstrate that

$$\lim_{R \to \infty} \mathcal{H}(z) = 0.$$
 [3 marks]

Question 6

(a) Use the formula $\sec^{-1} z = -i \ln \left(\frac{1 + \sqrt{1 - z^2}}{z} \right)$ to show that

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\sec^{-1}z\right) = \frac{1}{z\sqrt{z^2 - 1}}.$$
 [6 marks]

Hence comment about the analyticity of $\sec^{-1} z$.

[2 marks]

(b) Evaluate

$$\int_{\Lambda} \frac{z^2 - e^{-3iz}}{(2z - \pi)^3} \mathrm{d}z,$$

where Λ is the unit circle |z| = 1 traversed once positively.

[6 marks]

(c) Consider the complex function

$$f(z) = \frac{z}{e^z - 1}.$$

(i) Locate and classify all singularities of f(z).

[2 marks]

(ii) Find the value of the residue of f(z) at each of the singularities. [4 marks]

Question 7

(a) Your friend claims that

An essential singularity is a type of a pole.

Is this statement right or wrong? Discuss. [6 marks]

(b) Find the series of

$$f(z) = \frac{1 - \cos^2 z}{z^2}$$

in powers of z. Hence state what type of singularity the point z = 0 is. [6 marks]

(c) Evaluate

$$\int_{\Omega} \frac{\sin \pi z dz}{4z^2 + 1},$$
 [8 marks]

where Ω is the unit circle |z|=1 traversed once positively.