UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/8

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER : NUMERICAL ANALYSIS I

COURSE NUMBER : M 311

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. (a) Convert the decimal 3.6 into its binary equivalent.

[5 marks]

(b) Convert the binary $(0.0\overline{0011})_2$ into its decimal equivalent.

[5 marks]

(c) Determine the decimal number that has the following representation in the hypothetical Marc-32 computer.

0 100 01010 010 0010 0011 1010 0000 0000

[5 marks]

(d) Determine the Marc-32 representation of the number

$$2^{-127} + 2^{-128}$$

[5 marks]

QUESTION 2

2. (a) Given that

$$f(x) = x(\sqrt{x+1} - \sqrt{x})$$

- i. find a suitable function g(x) that has been reformulated to be algebraically equivalent to f(x) with the aim of avoiding loss of significance error. [5 marks]
- ii. Compare the results of calculating f(500) and g(500) using six digits and rounding. [5 marks]
- (b) Show that the function

$$f(x) = e^x - x^2$$

has exactly one root in the interval [-1,0]

[5 marks]

(c) Find the number of iterations needed to approximate a solution of the equation $x^3 + x - 4 = 0$ on the interval [1,4] to an accuracy of 10^{-3} using the bisection method. [5 marks]

- 3. (a) For the scheme $x_{n+1} = x_n + c(x_n^2 7)$, find the range of values of c for which convergence to the positive fixed point is guaranteed. For what value of c is convergence quadratic? [10 marks]
 - (b) The positive root of $f(x) = \alpha \beta x^2 x$ with $\alpha, \beta > 0$ is sought and the simple iteration

$$x_{n+1} = \alpha - \beta x_n^2$$

is used. Show that convergence will occur for sufficiently close starting value, provided

$$\alpha \beta < \frac{3}{4}$$

[10 marks]

QUESTION 4

- 4. (a) Use Lagrange interpolation process to obtain a polynomial of least degree that passes through the points (0,2),(1,2),(2,4) and (3,2). [10 marks]
 - (b) Given that $f(x) = x^2 + 2x + \sin x$, let our initial guesses for a root be $x_0 = -2.0$ and $x_1 = -2.1$. Apply the secant method twice to obtain a new estimate x_3 for the root of f(x) = 0. [5 marks]
 - (c) Complete the following divided-difference table and use it to obtain a polynomial of degree 3 that interpolate the function values indicated

\boldsymbol{x}	$f[\]$	$f[\ ,\]$	$f[\;,\;,\;]$	$f[\;,\;,\;,\;]$
-1	2			
1	-4		2	
3	6	2		
5	10			

[5 marks]

5. (a) i. Determine A, B and C such that the quadrature formula

$$\int_0^1 f(x) \ dx = Af\left(\frac{1}{4}\right) + Bf\left(\frac{3}{4}\right) + Cf(1)$$

is exact for the polynomials of as high a degree as possible.

[6 marks]

ii. Use the Gaussian Quadrature rule in (i) to approximate the integral

$$\int_0^1 x^4 \ dx$$

and compare your result against the exact value of the integral.

[4 marks]

(b) Solve the system of equations

$$8x_2 + 2x_3 = -7$$

$$3x_1 + 5x_2 + 2x_3 = 8$$

$$6x_1 + 2x_2 + 8x_3 = 26$$

using the LU decomposition method.

[10 marks]

QUESTION 6

- 6. (a) Evaluate the integral $\int_0^1 e^{-x^2} dx$ using the Trapezoidal rule with h = 0.25. [4 marks
 - (b) Evaluate $\int_2^6 \frac{x}{1+x} dx$ using the Simpson rule with h=1 and calculate the error against the exact value of the integral to four decimal places. [6 marks]
 - (c) Find the constants c_0 , c_1 and x_1 so that the quadrature formula

$$\int_0^1 f(x) \ dx = c_0 f(0) + c_1 f(x_1)$$

is exact for polynomials of as high a degree as possible.

[10 marks]

- 7. (a) Let $p_2(x)$ be the quadratic polynomial interpolating f(x) at (0, f(0)), (h, f(2h)) and (2h, f(2h)).
 - i. Write down the Lagrange representation of $p_2(x)$.

[4 marks]

ii. By integrating $p_2(x)$ between 0 and 3h, derive the following numerical integration rule that approximates

$$I = \int_0^{3h} f(x) \ dx$$

that is, show that

$$I \approx \frac{3h}{4}[f(0) + 3f(2h)].$$

[6 marks]

(b) Given the points (-3,-1), (0,2) and (3,-2), construct a forward difference table; hence deduce the polynomial of degree \leq 2 that goes through the points in Newton form. [10 marks]