UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007/8

BSc. II

TITLE OF PAPER

: MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

: M 215

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- 1. (a) Given that $f(x,y) = \frac{2y}{y + \cos x}$, find f_x and f_y [4 Marks]
 - (b) Find
 - i. $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$ [3 Marks]
 - ii. $\lim_{t \to \infty} \frac{t^2 + t}{2t^2 + 1}$ [3 Marks]
 - (c) Locate all relative extrema and saddle points of $f(x,y) = x^3 + y^3 2xy + 6$. Find the function value at these points. [10 Marks]

QUESTION 2

2. (a) If

$$\underline{a} = i - j + 2k$$

$$\underline{b} = (2,1,1)$$

$$\underline{c} = i + 2j - k,$$

show that $(\underline{a} \times \underline{b}) \times \underline{c} = (\underline{a} \cdot \underline{c})\underline{b} - (\underline{b} \cdot \underline{c})\underline{a}$

[5 Marks]

- (b) Find the first five terms of the Taylor series generated by $f(x) = \frac{1}{x}$ at x = 2 [6 Marks]
- (c) Find the first five terms of the Mcclaurins series generated by $f(x)=(1+x)^3$. Use the series to evaluate $\int_1^2 (1+x)^3 dx$ [9 Marks]

QUESTION 3

- 3. (a) Use the method of Lagrange to find the greatest and the smallest values of f(x,y)=xy subject to $g(x,y)=\frac{x^2}{8}+\frac{y^2}{2}=1$ [10 Marks]
 - (b) Solve the differential equation $(x^2 + y^2)dx + (2xy + \cos y)dy = 0$ [7 Marks]
 - (c) For the function $f(x) = \sqrt{x-1}$ find c in $1 \le x \le 3$ that satisfies the mean value theorem. [3 Marks]

QUESTION 4

- 4. (a) Use polar coordinates to evaluate the integral $\int \int_R \frac{dx \, dy}{1 + x^2 + y^2}$, where R is the region in the first quadrant bounded by y = 0, y = x and $x^2 + y^2 = 4$ [10 Marks]
 - (b) Solve the differential equation $(x^3 + y^3)dx + xy^2 dy = 0$ [10 Marks]

QUESTION 5

- 5. (a) Sketch and evaluate the area of the region enclosed by $\int_0^4 \int_{\frac{y}{2}}^y (4x+2)dx \ dy$ [10 Marks]
 - (b) Reverse the order and evaluate the resulting integral.

[5 Marks]

(c) Find the spherical coordinates equation of $x^2 + y^2 + (z - 1)^2 = 1$

[5 Marks]

QUESTION 6

6. (a) Use the chain rule to express $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial r}$ and evaluate at $(r,s)=(\frac{1}{2},1)$ if

$$w = x^2 + 2y + Z^2$$

$$x = \frac{r}{s}, y = r^2 + \ln s$$
$$Z = 2r$$

$$Z = 2r$$

[10 Marks]

(b) If
$$u = u(x, y)$$
, $x = r \cos \theta$, $y = r \sin \theta$, Show that
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \quad \left(\frac{\partial u}{\partial \theta}\right)^2$$

[6 Marks]

(c) Use differentials to approximate $(64.08)^{\frac{1}{3}}$

[4 Marks]

QUESTION 7

7. (a) Evaluate the iterated integral $\int_0^1 \int_0^1 \frac{y}{(xy+1)^2} dx \ dy$

[10 Marks]

(b) Use implicit differentiation to find y'

$$x^3 + (x - y)^2 = (x + y)^2 - y^3$$

[5 Marks]

(c) If Z = Z(x, y) and

$$r = e^{r+s} + e^{r-s}$$

$$y = e^{r+s} - e^{r-s}$$

find Z_{rr}

[6 Marks]