University of Swaziland

Supplementary Examination 2008

BSc II, Bass II, BEd II

Title of Paper

: Ordinary Differential Equations

Course Number

: M213

Time Allowed

: Three (3) hours

Instructions

.

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questionss
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

(a) Find the general solution of

$$xe^{2xy}dx = (1+y)dy.$$
 [10 marks]

(b) Find a solution of the equation

$$y'' - 7y' + 12y = x^2$$
 [10 marks]

Question 2

(a) Obtain the general solution of

$$y^{iv} - 16y = 0. ag{10 marks}$$

(b) Use the method of Laplace transforms to solve

$$\ddot{y} + 4\dot{y} + 4y = e^{-2t}$$
, $y(0) = 0$, $y'(0) = 0$. [10 marks]

Question 3 Consider the equation

$$y' - 2xy = 0. (1)$$

- (a) Find the general solution of (1) analytically. [6 marks]
- (b) Find a series solution of (1) about x = 0. [14 marks]

Question 4

(a) Your friend claims that

"All linear first order ODEs can be made exact."
Is the statement right or wrong? Discuss.

[7 marks]

(b) Find the general solution of

$$y'' + 2y' + 10y = e^{-x}.$$
 [13 marks]

Question 5

(a) Solve

$$y(\ln y - \ln x - 1)dx + xdy = 0$$
, $y(1) = 1$. [12 marks]

(b) Find the general solution of

$$\frac{1}{x^2y}\mathrm{d}x + \left(\frac{1}{xy^2} - 2y\right)\mathrm{d}y = 0.$$
 [8 marks]

Question 6

(a) Find the general solution of

$$y'' - 16y = 0. ag{6 marks}$$

(b) Find the solution of

$$y'' - 6y' + 9y = 0$$

that satisfies the conditions y(0) = y'(0) = 2.

[14 marks]

Question 7

(a) Solve

$$yy' - xy^2 + x^2 = 0.$$
 [10 marks]

(b) Using the method of variation of parameters, obtain the general solution of

$$y'' - 3y' + 2y = e^{3x}.$$
 [10 marks]

Table of Laplace Transforms

$$f(t) \qquad F(s) \\ t^{n} \qquad \frac{n!}{s^{n+1}} \\ \frac{1}{\sqrt{t}} \qquad \sqrt{\frac{\pi}{s}} \\ e^{at} \qquad \frac{1}{s-a} \\ t^{n}e^{at} \qquad \frac{n!}{(s-a)^{n+1}} \\ \frac{1}{a-b}(e^{at}-e^{bt}) \qquad \frac{1}{(s-a)(s-b)} \\ \frac{1}{a-b}(ae^{at}-be^{bt}) \qquad \frac{s}{(s-a)(s-b)} \\ \sin(at) \qquad \frac{s}{s^{2}+a^{2}} \\ \cos(at) \qquad \frac{s}{s^{2}+a^{2}} \\ \cos(at) \qquad \frac{s}{s^{2}+a^{2}} \\ \sin(at) - at\cos(at) \qquad \frac{2a^{3}}{(s^{2}+a^{2})^{2}} \\ e^{at}\sin(bt) \qquad \frac{b}{(s-a)^{2}+b^{2}} \\ \sin(at) \qquad \frac{s}{s^{2}-a^{2}} \\ \cosh(at) \qquad \frac{s}{s^{2}-a^{2}} \\ \sin(at) \sinh(at) \qquad \frac{2a^{3}}{s^{4}-4a^{4}} \\ \sinh(at) \sin(at) \qquad \frac{2a^{3}}{s^{4}-a^{4}} \\ f^{(n)}(t) \qquad s^{n}F(s) - s^{n-1}f(0) - \dots - f^{n-1}(0)$$