UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2008

BSc. / BEd. / B.A.S.S. II

TITLE OF PAPER

: CALCULUS II

COURSE NUMBER

: M 212

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a) Find the Taylor Series generated by the function $f(x) = \cos x$

at x = 0.

[8 marks]

(b) From the formula derived for the Taylor Series of $\cos x$ in (a) above, derive the Maclaurin series for $\cos x$.

[4 marks]

(c) Use the Binomial series to estimate $\sqrt{1.25}$ with an error of less than 0.001.

[8 marks]

QUESTION 2

(a) Find the area of the region that lies inside the circle r=1 and outside the cardioid $r=1-\cos\theta$.

[5 marks]

(b) Replace the following polar equation by the equivalent cartesian equations and identify its graph, $r^2=4r\cos\theta$.

[7 marks]

(c) Find all the polar coordinates of the point $P(2, \frac{\pi}{6})$.

[8 marks]

QUESTION 3

(a) If $f(x, y) = x \cos y + ye^x$, find the second-order derivatives:

 $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial y \partial x}$

[5 marks]

(b) Show that the equation $x^2 - 4y^2 + 2x + 8y - 7 = 0$ represents a

hyperbola. Find its center, asymptotes, and foci.

[7 marks]

(c) Find the directrix and the eccentricity of the parabola $r = \frac{25}{10+10\cos\theta}$

[5 marks]

(d) Find the polar equation for a conic with e = 1 and y = -6.

[3 marks]

QUESTION 4

(a) Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$
 [6 marks]

- (b) Show that $f(x,y)=\begin{cases} \frac{2xy}{x^2+y^2} & (x,y)\neq (0,0)\\ 0 & (x,y)=(0,0) \end{cases}$ is continuous at every point except the origin. [10 marks]
- (c) Find $\frac{\partial z}{\partial x}$ if the equation $yz \ln z = x + y$ defines z as a function of the two independent variables x and y and the partial derivative exists. [4 marks]

QUESTION 5

(a) Show that
$$f_{xy} = f_{yx}$$
 for the function $f = xy + \frac{e^y}{y^2 + 1}$. [6 marks]

- (b) Use the chain rule to find the derivative of w=xy with respect to t along the path $x=\cos t, y=\sin t$. [7 marks]
- (c) Find a spherical coordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1. ag{7 marks}$

QUESTION 6

(a) Evaluate the iterated integral $\int_0^3 \int_0^2 (4-y^2) dy dx$.

[4 marks]

(b) Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x^2+y^2$,

 $x = r - s, \quad y = r + s.$

[6 marks]

(c) Evaluate the volume of an 'ice cream cone' cut from a solid sphere $\rho \leq 1$ by the cone $\phi = \frac{\pi}{3}$ given by

$$V = \int_0^{2\pi} \int_0^{\frac{\pi}{3}} \int_0^1 \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta.$$

[6 marks]

(d) Find a spherical coordinate equation for the cone $z = \sqrt{x^2 + y^2}$.

[4 marks]

QUESTION 7

(a) Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.

[5 marks]

(b) Find $\frac{\partial f}{\partial y}$ as a function if $f(x, y) = y \sin xy$

[5 marks]

(c) Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function w = f(x, y). Show that

(i) $\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta$ and

(ii) $\frac{1}{r} \frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta$

[3,3 marks]

(d) Evaluate the double integral over the region R.

$$\iint_{R} (6y^{2} - 2x) dA \quad R: \quad 0 \le x \le 1, \quad 0 \le y \le 2$$

[4 marks]