UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007/8

BSc. / BEd. / B.A.S.S. II

TITLE OF PAPER

: CALCULUS 1

COURSE NUMBER

: M 211

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

3. ONLY NON-PROGRAMMABLE CALCULATORS

MAY BE USED.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let $f(x) = x + \frac{1}{x}$. Show that the function has a local minimum at x = -1 and a local maximum at x = 1. [5 marks]
- (b) State and prove the Mean Value Theorem (MVT). [10 marks]
- (c) Find the value or values of c that satisfy the equation given by the MVT for the function and interval

$$f(x) = \sin^{-1} x,$$
 [-1,1]

[5 marks]

QUESTION 2

Evaluate the limit of the following functions using L'Hopital's rule.

(a)

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos(2x)}$$

(b)

$$\lim_{x\to\infty} (1-\frac{1}{x^2})^{x^2}$$

(c)

$$\lim_{x\to 0} x^2 \cot x$$

[6,8,6 marks]

QUESTION 3

- (a) Derive the **shell formula** for finding the volumes of solids of revolution about a vertical line L. [10 marks]
- (b) Use the shell formula above to find the volume of the solid generated by revolving the region bounded by the curve $y = \sqrt{x}$ and the lines y = 0 and x = 4 about the x-axis. [10 marks]

QUESTION 4

Suppose that f(x) is defined for all $0 \le x \le 1$, that f is differentiable at x = 0, and that f(0) = 0. Define a sequence $a_n = nf(\frac{1}{n})$.

(a) Show that $\lim_{x\to\infty} a_n = f'(0)$.

[10 marks]

- (b) Use the result in (a) to find the limit of the following sequences
- (i) $a_n = n \tan^{-1} \frac{1}{n}$

[6 marks]

(ii) $a_n = n(e^{\frac{1}{n}} - 1)$

[4 marks]

QUESTION 5

(a) Find the length of the curve given by the following parametric equation

 $x = t - \sin t,$

 $y = 1 - \cos t;$

 $0 \le t \le 2\pi$.

[10 marks]

(b) Show that the given sequence is monotone increasing or decreasing,

(i) $a_n = \frac{n}{2^{n+2}}$

(ii) $a_n = \frac{e^{2\sqrt{n}}}{n}$

[10 marks]

QUESTION 6

(a) State the ratio test for infinite series.

[4 marks]

(b) Apply the ratio test to the series $\sum_{k=1}^{\infty} \frac{3^k}{k! \cdot k}$ to determine whether the series converges or diverges.

[6 marks].

(c) Prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

[10 marks]]

QUESTION 7

- (a) Use the **disc method** to find the volume of the solid generated by the region bounded by the curve $y = \sqrt{x}$ and the lines y = 1 and x = 4 about the line y = 1. [10 marks]
- (b) Find, using the washer method, the volume of the solid generated by revolving the region bounded by the curve $y = x^2$, and the lines y = 2 x and x = 0 for $x \ge 0$ about the y-axis. [10 marks]

End of Paper