# University of Swaziland



# Supplementary Examination 2008

# BSc I, EEng I, BEd I

Title of Paper : Algebra, Trig. and Analytic Geometry

Course Number

: M111

Time Allowed

: Three (3) hours

Instructions

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

#### Question 1

(a) Work out

$$\frac{4x^4 + 12x^3 - 21x - 20}{x + \frac{1}{2}}.$$
 [10 marks]

(b) Expand  $\left(x^2 - \frac{2}{\sqrt{x}}\right)^5$  and simplify term by term. [10 marks]

#### Question 2

- (a) Find three numbers in arithmetic progression such that their sum is 15 and their product is 80. [10 marks]
- (b) Find the cube roots of

$$-27i.$$
 [10 marks]

### Question 3

- (a) Find the values of A and B such that x + 3 is a factor of  $P(x) = Ax^3 + 3x^2 + Bx 12$ , and P(x) leaves a remainder of -6 when divided by x + 1. [6 marks]
- (b) Find the first five terms of the binomial expansion of

$$(1+x)\sqrt{1-2x}.$$
 [7 marks]

(c) Prove that the sum of the first n positive integers is  $n^2$ . [7 marks]

#### Question 4

(a) Given the complex numbers

 $\alpha = 3 - 4i, \ \lambda = -4 + 3i,$  evaluate

- i)  $3\alpha 4\lambda$  ii)  $\alpha\lambda$  iii)  $\frac{\alpha}{\lambda}$  iv)  $|\alpha|$  [10 marks]
- (b) Find all values of x in the interval  $0 \le x < 2\pi$ , satisfying

 $\cos^2 x - \sin x + 1 = 0.$ [8 marks]

### Question 5

- (a) A bob of a pendulum swings through an arc of 50cm on its first swing. Each successive swing is 90% of the length of the previous swing. Find the total distance travelled by the bob in coming to rest. 4 marks
- (b) Prove

$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A. \quad [8 \text{ marks}]$$

(c)

## Question 6

(a) Find all roots of

$$2x^3 - x^2 - 8x + 4 = 0.$$
 [10 marks]

- (b) Solve for x
  - (i)  $\left(\frac{5}{3}\right)^{x-1} = \frac{81}{725}$ . [5 marks]
  - (ii)  $\log_2(x-1) = 3 \log_2(x+1)$ [5 marks]

# Question 7

(a) Use Cramer's rule to solve the system

$$2x - 3y - 3z = 9$$
  
 $3y + 2z = 0$   
 $3x - 4y + = 1$ .

[13 marks]

(b) Evaluate

$$\left(1+i\sqrt{3}\right)^6$$
,

and express in the form a + ib.

[7 marks]