UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007

BSc. / BEd. / B.A.S.S. IV

TITLE OF PAPER

: FLUID DYNAMICS

COURSE NUMBER

: M 455

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. (a) The velocity field for a fluid motion is given by

$$\mathbf{q} = Ax^3y^2z\mathbf{i} + (z^3 + Bx^4yz)\mathbf{j} + (3yz^2 - x^4y^2)\mathbf{k}$$

find the values of the constants A and B if the flow is irrotational and derive the velocity potential ϕ for this flow. [8 marks]

(b) Given that the velocity field for a fluid flow is given by

$$\mathbf{q} = x^2 t \mathbf{i} + 2xyt \mathbf{j} + 2yzt \mathbf{k}$$

find the *vorticity* and *rotation* at (2, -1, 3) when t = 2. [6 marks]

(c) Show that the stream function ψ corresponding to the complex potential $w=z^2+z+\frac{a^4}{z^2}+\frac{a^2}{z}$ is given by

$$\psi = 2xy + y - \frac{2a^4xy}{(x^2 + y^2)^2} - \frac{a^2y}{x^2 + y^2}$$

[6 marks]

QUESTION 2

2. A container is formed by rotating the curve $z = \frac{x^2}{a}$ about the vertical z-axis. The container is filled with liquid to a depth h. At time t = 0 a small hole of radius $\frac{a}{n}$ (n being very large) is opened at the bottom so that the liquid drains out. Let z(t) be the depth of the remaining liquid at time t. Show that

$$\frac{dz}{dt} = -a\sqrt{\frac{2gz}{n^4z^2 - a^2}}$$

[12 marks]

and hence show that, approximately,

$$z(t) = \left(h^{\frac{3}{2}} - \frac{3at\sqrt{g}}{\sqrt{2}n^2}\right)^{2/3}$$

[8 marks]

3. A viscous liquid occupies the space between two coaxial, infinitely-long cylinders. The inner cylinder has radius a and is fixed, while the outer cylinder has radius b and is rotating with constant angular velocity Ω . Let (r, θ, z) be cylindrical polar coordinates with z-axis coinciding with the cylinders' axis such that the outer cylinder is rotating in the direction of increasing θ . Assuming that the velocity of the liquid has the form $\mathbf{q} = u(r)\hat{\theta}$ (where u(r) means that u is a function of r only and $\hat{\theta}$ is a unit vector in the θ direction) and that body forces are negligible, use the Navier-Stokes equations in the form

$$\nabla(\frac{1}{2}\mathbf{q}^2) - \mathbf{q} \times (\nabla \times \mathbf{q}) = -\frac{1}{\rho}\nabla p - \nu\nabla \times (\nabla \times \mathbf{q})$$

to show that $u = A(r - a^2/r)$, where $A = \Omega(1 - a^2/b^2)$. [20 marks]

QUESTION 4

4. (a) The velocity potential for a steady incompressible, irrotational flow with circulation around a fixed cylinder of radius a is given in cylindrical polar coordinates by

$$\phi = Ur\left(1 + \frac{a^2}{r^2}\right)\cos\theta + \frac{k\theta}{2\pi}$$

where U is the uniform speed at infinity. Find the corresponding

(i) velocity field q.

[4 marks]

(ii) stream function ψ .

[6 marks]

(b) In the two z=x+iy plane, a line vortex of strength m>0, is placed at z=c and another, of strength -m, at z=-c, where c is a real positive number. Both vortices are held fixed at these locations. Write down the complex potential w for this flow and show that the stream function ψ and the velocity potential ϕ are given by

$$\psi = \frac{m}{4\pi} \log \frac{(x-c)^2 + y^2}{(x+c)^2 + y^2}$$
 and $\phi = -\frac{m}{2\pi} \tan^{-1} \frac{2cy}{x^2 + y^2 - c^2}$

$$hint: \text{ You may set } z-c=r_1e^{i\theta_1} \text{ and } z+c=r_2e^{i\theta_2}, \quad \text{and}$$
 use $\tan^{-1}A+\tan^{-1}B=\tan^{-1}\left(\frac{A+B}{1-AB}\right)$ [10 marks]

5. (a) Show that the complex velocity potential corresponding to the velocity field

$$q = 3(y^2 - x^2)i + 6xyj$$
 is $w(z) = z^3$

[6 marks]

(b) A fluid has the complex velocity potential

$$w(z) = i + z^2, \quad z = x + iy$$

Find the stream function and the velocity potential for this flow [4 marks]

(c) Consider the viscous flow of fluid confined between two parallel flat plates of infinite extent in the xz plane. The distance between the plates is h with the lower plate fixed at y = -h/2 and the upper plate is fixed at y = h/2. If the velocity field for the flow is of the form

$$\mathbf{q} = (u(y), 0, 0)$$

use Navier-Stokes equations in the form

$$rac{\partial \mathbf{q}}{\partial t} + (\mathbf{q} \cdot
abla) q = -rac{1}{
ho}
abla p +
u
abla^2 \mathbf{q}$$

to show that the velocity profile for this flow is

$$u(y) = \frac{1}{2\mu} \frac{dp}{dx} \left\{ y^2 - \frac{h^2}{4} \right\}$$

[10 marks]

6. (a) An incompressible fluid flows steadily past a sphere of radius a located at the origin. The velocity at large distances away from the sphere is Ui, where i is a unit vector in the x-direction. It is assumed that the motion is irrotational and that there are no body forces. Given that the velocity potential for the flow is given by

$$\phi = U\left(r + \frac{a^3}{2r^2}\right)\cos\theta$$

in the usual spherical coordinates (r, θ, ψ) , with $\theta = 0$, measured from the x-axis.

i. Find the velocity components of the flow.

[5 marks]

ii. Show that the pressure is given by

$$p = p_{\infty} + \frac{1}{2}\rho U^2 \left(1 - \frac{9}{4}\sin^2\theta\right)$$

where p_{∞} is the pressure at large distances from the sphere. [5 marks]

(b) At a point in a steady, incompressible fluid having cylindrical coordinates (r, θ, z) the velocity components are

$$(r^2\cos\theta, -3r^2\sin\theta, 0)$$

Determine whether or not the equation of continuity is satisfied, and if so find the equations of the streamlines [10 marks]

7. Consider the boundary layer equations in the form

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2} - au$$
(2)

with boundary conditions

$$u = ax$$
 , $v = -(\nu a)^{\frac{1}{2}}$ on $y = 0$ and $u = 0$ on $y = \infty$

Using the similarity transformation $\eta=y\left(\frac{a}{\nu}\right)^{\frac{1}{2}}$ and the stream function formulation $\psi = -x(\nu a)^{\frac{1}{2}}f(\eta)$ where a is a constant and ν is the dynamic viscosity, Show that equation (2) and the boundary conditions can be transformed into

$$f'''+ff''-(f')^2-f'=0$$

$$f=1 \quad , \quad f'=1 \ \ {\rm on} \ \eta=0 \quad {\rm and} \quad f'=0 \quad {\rm on} \ \eta=\infty$$

[20 marks]