UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER

: Metric Spaces

COURSE NUMBER

: M431

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let X be a nonempty set.
 - (i) What is meant by saying that (X, d) is a metric space?
 - (ii) Let d be the function on \mathbb{R}^2 defined by

$$d(x, y) = 2|x_1 - y_1| + 3|x_2 - y_2|,$$

where $x=(x_1,x_2)\in\mathbb{R}^2$ and $y=(y_1,y_2)\in\mathbb{R}^2$. Prove that (\mathbb{R}^2,d) is a metric space.

- (b) Let (X, d) be a metric space. Define the following:
 - (a) the distance from $x \in X$ to a subset $A \subset X$,
 - (b) the diameter of $A \subset X$,
 - (c) the distance between two subsets, A and B, of X,
 - (d) a bounded subset $A \subset X$,
 - (e) a bounded mapping g from a nonempty set Y to X. [10]

QUESTION 2

- (a) Let (X, d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is *convergent*? [2]
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 :

(i)
$$x_n = \left(\frac{n^2}{2n^2 + 1}, \frac{1}{n+1}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (3^{-n}, (-1)^n \exp(\frac{1}{n})).$ [8]

- (c) (i) Suppose that (x_n) converges to x in C[a, b] in the uniform metric. Explain what is meant by *pointwise convergence*. Show that (x_n) converges to x pointwise.
 - (ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \begin{cases} 0 & \text{if } t = 0, \\ 1 & \text{if } 0 < t \le 1. \end{cases}$$

Deduce that (x_n) is not convergent in C[0,1].

[10]

QUESTION 3

- (a) Define what is meant by:
 - (i) a Cauchy sequence in a metric space,
 - (ii) a complete metric space. [3]
- (b) Which of the following spaces X is complete and which is incomplete in the usual (Euclidean) metric? Give reasons.

(i)
$$X = \mathbb{Q}$$
,
(ii) $X = \{\frac{1}{n} : n \in \mathbb{N}\}$. [4]

(c) Let (X, d) be a metric space with the metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 3 & \text{if } x \neq y \end{cases}$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete. [5]

- (d) (i) Explain what is meant by a contraction of a metric space. Show that if $f:[a,b] \longrightarrow [a,b]$ is differentiable, then f is a contraction if and only if there is number r < 1 such that $|Df(x)| \le r$ for every $x \in (a,b)$.
 - (ii) State without proof the Contraction Mapping Theorem.
 - (iii) Show that the mapping $f: [-1,1] \longrightarrow [-1,1]$ defined by $f(x) = \frac{1}{14}(3x^3 2x^2 + 9)$ is a contraction, and deduce that there is unique solution to the equation $3x^3 2x^2 14x + 9 = 0$ in the interval [-1,1]. [8]

QUESTION 4

- (a) Let (X, d) be a metric space and let $S \subseteq X$. What is meant by saying that A is open? Show that if $(A_i)_{i \in I}$ is any collection of open sets, then the union $\bigcup_{i \in I} A_i$ is also open. [6]
- (b) What is meant by an open ball B(a,r) in a metric space (X,d)? Show that an open ball is open. By drawing a diagram, or otherwise, describe the open ball B(a,3) in \mathbb{R}^2 , where a=(3,4)
 - (i) with the usual metric,
 - (ii) with the max metric. [8]
- (c) Show that \emptyset and X are open, where (X, d) is a metric space. [6]

QUESTION 5

- (a) Let $f: X \longrightarrow Y$, where X and Y are metric spaces. Give the definition of continuity of f in terms of convergence of sequences. Show that if f is continuous, then the following are true:
 - (i) if A is a closed subset of Y, then $f^{-1}(A)$ is a closed subset of X.
 - (ii) if Y = X, then $f^2 : X \longrightarrow X$ is also continuous (where $f^2(x) = f(f(x))$).[10]

(b) Suppose that $f,g:X\longrightarrow\mathbb{R}$ are both continuous. Show that the function $h:X\longrightarrow\mathbb{R}$ defined by

$$h(x) = 6f(x) - 5g(x)$$

is continuous. [4]

(c) Let f be the function $f: C[0,1] \longrightarrow \mathbb{R}$ defined for $x \in C[0,1]$ by f(x) = x(0). Show that f is not continuous with respect to the L_1 metric on C[0,1] (and the usual metric on \mathbb{R}) by considering the functions $x_n(t)$ given by

$$x_n(t) = \begin{cases} (n-1)t & \text{if } 0 \le t \le \frac{1}{n} \\ 1-t & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

(**Hint** Sketch the functions $x_n(t)$ and consider their limit in the L_1 metric). [6]

QUESTION 6

- (a) Let X be a metric space and $A \subseteq X$. What is meant by saying that A is compact? [2]
- (b) Assuming that a closed bounded subset of \mathbb{R} is compact, show that the same is true for \mathbb{R}^2 .
- (c) Show that in any metric space, a closed subset of a compact set is compact. [5]
- (d) Which of the following sets is compact? Give reasons.
 - (i) $\{(x,y): 0 \le x < y \le 1\}$ in \mathbb{R}^2 ,

(ii)
$$\{1, \frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, \dots\}$$
 in \mathbb{R} . [6]

QUESTION 7

- (a) Let X be a set and let d_1 and d_2 be metrics on X. What is meant by saying that the metrics d_1 and d_2 are equivalent? [3]
- (b) Suppose that there are positive constants k and K

$$kd_1(x,y) \le d_2(x,y) \le Kd_1(x,y)$$

[5]

for all $x, y \in X$. Show that d_1 and d_2 are equivalent.

- (c) Show that on \mathbb{R}^2 , the Euclidean metric and the Chicago metric are equivalent.

 [4]
- (d) Suppose that d_1 and d_2 are equivalent metrics on a set X. Show that if $B_1(a, \varepsilon)$ is any open ball in the d_1 metric, then there is an open ball $B_2(a, \delta)$ in the d_2 metric with $B_2(a, \delta) \subseteq B_1(a, \varepsilon)$. Deduce that if $x_n \to x$ in the d_2 metric, then it is convergent in the d_1 metric.

END OF EXAMINATION