UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2007

BSc./ B.Ed./ BASS IV

TITLE OF PAPER: ABSTRACT ALGEBRA II

COURSE NUMBER:

M423

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Calculators may be used.

SPECIAL REQUIREMENTS:

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

(a) Which of the following are rings under addition and multiplication? Give reasons

(a)
$$\mathbb{Z}[\sqrt{-7}] = \left\{a + b\sqrt{-7} : a, b \in \mathbb{Z}\right\}$$

[5 marks]

(b)
$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

[5 marks]

(c) the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ c & 2d \end{pmatrix}$ where a,b,c,d are integers

[5 marks]

(d) $(\mathbb{Z},+,\cdot)$ where + is the usual addition and the multiplication is $a\cdot b=0$ $\forall a,b\in\mathbb{Z}$

[5 marks]

Question 2

(a) Which of the following are integral domains and which are fields? Justify your answer

(a)
$$\mathbb{Z}_2 \times \mathbb{Z}_2$$

[5 marks]

(b)
$$\{a+bi: a,b\in\mathbb{Q}\}$$

[5 marks]

(c)
$$\mathbb{Z} \times \mathbb{R}$$

[5 marks]

(d) $\mathbb{R}[x]$

[5 marks]

Question 3

- (a) Consider the polynomial $f(x) = x^3 + 2x + 3$ over $\mathbb{Z}_5[x]$
- (i) Is f(x) an irreducible polynomial over $\mathbb{Z}_5[x]$? Why?

[5 marks]

(ii) Express f(x) as a product of irreducible polynomials of $\mathbb{Z}_5[x]$

[5 marks]

(b) Determine which of the following polynomials in $\mathbb{Z}[x]$ satisfy an Einstein criterion for irreducibility over \mathbb{Q}

(i)
$$4x^{10} - 9x^3 + 24x - 18$$

[5 marks]

(ii)
$$2x^{10} - 25x^3 + 10x^2 - 30$$

[5 marks]

Question 4

(a) For each of the given algebraic numbers $\alpha \in \mathbb{C}$ find $err(\alpha, \mathbb{Q})$ and $deg(\alpha \mathbb{Q})$

(i)
$$\sqrt{3-\sqrt{6}}$$

[3 marks]

(ii)
$$\sqrt{\frac{1}{3} + \sqrt{7}}$$

[3 marks]

(iii)
$$\sqrt{2} + i$$

[3 marks]

(b) Show that the polynomial $x^P + a$ in $\mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$ and p is prime.

[5 marks]

(c) Let α be a zero of $x^2 + x + 1$ in the extension field of \mathbb{Z}_2 . Give the addition and multiplication tables for the elements of $\mathbb{Z}_2(\alpha)$.

[6 marks]

Question 5

(a) Give the formal definition of a Euclidean ring R.

[4 marks]

(b) Let R be a Euclidean ring.

(i) Prove that any two elements a and b in R have a greatest common divisor d.

[5 marks]

(ii) Show that there exists $m, n \in R$ such that d = am + bn.

[5 marks]

(c) Prove that every finite integral domain is a field.

[6 marks]

Question 6

(a) Find all ideals N and all maximal ideals p of \mathbb{Z}_{18}

[5 marks]

(b) In a ring \mathbb{Z}_n show that

(i) divisors of zero are those elements that are NOT relatively y prime to n.

[5 marks]

(ii) elements that are relatively prime cannot be zero divisors

[5 marks]

(c) Describe all units in the ring

$$\mathbb{Z}\times\mathbb{Q}\times\mathbb{Z}$$

[5 marks]

Question 7

(a) Show that for a field F_1 the set of all matrices of the form

$$\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \quad \text{for} \quad a,b \in F$$

is a right ideal but not a left ideal of $M_2(F)$ where $M_2(F)$ - all 2×2 matrices with entries from the field F.

[6 marks]

(b) Let $\varphi_{\alpha}: \mathbb{Z}_{7}[x] \to \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism (i) $\varphi_{5}[(x^{3}+2)(4x^{2}+3)(x^{7}+3x^{2}+1)]$

(i)
$$\varphi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$

[5 marks]

(ii)
$$\varphi_4[3x^{106} + 5x^{99} + 2x^{53}]$$

[5 marks]

(c) Show that the rings $\mathbb Z$ and $3\mathbb Z$ are NOT isomorphic

[4 marks]

****** END OF EXAMINATION *******