UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2007

BSc./ B.Ed./ BASS IV

TITLE OF PAPER: ABSTRACT ALGEBRA II

COURSE NUMBER: M423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Calculators may be used.

SPECIAL REQUIREMENTS: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Let f be a polynomial over \mathbb{Z} , which is irreducible over \mathbb{Z} . Show that f considered as a polynomial over Q is also irreducible

[10 marks]

(b) Classify each of the given $\alpha \in \mathbb{C}$ as algebraic or transcedental over the given field F. If α is algebraic over F find $deg(\alpha, F)$

(i)
$$\alpha = 1 + i, F = \mathbb{Q}$$

(ii)
$$\alpha = \sqrt{\pi}, F = \mathbb{Q}[\pi]$$

(iii)
$$\alpha = \pi^2, F = \mathbb{Q}$$

(i)
$$\alpha = 1 + i, F = \mathbb{Q}$$

(ii) $\alpha = \sqrt{\pi}, F = \mathbb{Q}[\pi]$
(iii) $\alpha = \pi^2, F = \mathbb{Q}$
(iv) $\alpha = \pi^2, F = \mathbb{Q}(\pi)$

(v)
$$\alpha = \pi^2, F = \mathbb{Q}(\pi^3)$$

[10 marks]

Question 2

- (a) Prove that if D is an integral domain, then D[x] is also an integral domain. [8 marks]
 - (b) Decide the irreducibility or otherwise of

(i)
$$x^3 - 7x^2 + 3x + 3 \in \mathbb{Q}[x]$$

[6 marks]

(ii)
$$2x^{10} - 25x^3 + 10x^2 - 30 \in \mathbb{Q}[x]$$

[6 marks]

- (a) In a ring \mathbb{Z}_n show that the
- (i) divisors of zero are those elements that are NOT relatively prime to n.

[5 marks]

(ii) elements that are relatively prime can't be zero divisors

[5 marks]

- (b) (i) Give an example of a ring R with unity 1 that has a subring \mathbb{R}^1 with unity 1^1 ; where $1 \neq 1^1$.
 - (ii) Describe all units in the ring $\mathbb{Z}\times\mathbb{Q}\times\mathbb{Z}$

[4 marks]

Question 4

(a) (i) Show that the ring $\mathbb{Z}_2\times\mathbb{Z}_2$ is NOT a field

[5 marks]

(ii) Find a polynomial of degree > 0 in $\mathbb{Z}_4[x]$ that is a unit

[5 marks]

- (b) (i) Show that $(a + b)(a b) = a^2 b^2$ for all a and b in a ring R, if and only if R is commutative [6 marks]
 - (ii) Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are NOT isomorphic

[4 marks]

- (a) (i) Define an ideal N of a ring R.
 - (ii) Find all ideals N of \mathbb{Z}_{12} and all maximal ideals of \mathbb{Z}_{18}

[8 marks]

(b) (i) Prove that every finite integral domain is a field.

[6 marks]

(ii) Show that for a field F, the set of all matrices of the form

$$\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \quad \text{for } \quad a,b \in F$$

is a right ideal but not a left ideal of $M_2(F)$.

[6 marks]

Question 6

(a) Suppose F is a field, f is an irreducible polynomial over F and g,h are polynomials over F such that F divides gh. Show that either f divides g or f divides gh.

[10 marks]

(b) Let $\mathbb{Q}_{\alpha}: \mathbb{Z}_7[x] \to \mathbb{Z}_7$. Evaluate each of the following for the indicated evaluation homorphism.

(i)
$$\varphi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$

[5 marks]

(ii)
$$\varphi_4(3x^{106} + 5x^{99} + 2x^{53})$$

[5 marks]

- (a) Determine whether each of the following polynomials in $\mathbb{Z}[x]$ satisfies an Eisenstein criteria for irreducibility (i) $8x^3 + 6x^2 - 9x + 24$

[4 marks]

(ii) $2x^{10} - 25x^3 + 10x^2 - 30$

[4 marks]

(b) Let α be a zero of $x^2 + 1$ in an extension field of \mathbb{Z}_3 . Give the multiplication and addition tables for the nine elements of $\mathbb{Z}_3(\alpha)$

[12 marks]

****** END OF EXAMINATION *******