UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007

BSc. / BEd. / B.A.S.S. IV

TITLE OF PAPER

: NUMERICAL ANALYSIS II

COURSE NUMBER

M 411

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. (a) Use the fourth-order Runge-Kutta method with step size h=0.1 to approximate y(0.2) and y'(0.2) for the following initial value problem

$$y'' - 2y' + 2y = e^{2x} \sin x \quad 0 \le x \le 1$$
$$y(0) = -0.4, \quad y'(0) = -0.6$$

[10 marks]

(b) Use the Newton's interpolating formula

$$f(x,y) \approx f_0 + \frac{(x-x_0)}{h} \Delta f_0 + \frac{(x-x_0)(x-x_1)}{2h^2} \Delta^2 f_0 + \dots$$

to derive the Adams 3-Step formula for integrating over the interval [k, k+1] assuming that information at the preceding points x_{k-2} , x_{k-1} and x_k is known. [10 marks]

QUESTION 2

2. (a) Use Taylor series method with terms through t^4 to approximate x(0.1) and y(0.1) as solutions of the following system of ordinary differential equations.

$$\frac{dx}{dt} = y + tx, x(0) = 1$$

$$\frac{dy}{dt} = x + ty, y(0) = -1$$

[10 marks]

(b) Use Euler's method with h = 0.1 to approximate the value of y(0.4) and y'(0.4) in the following differential equation

$$y'' + \sin y = 0$$
 with $y(0) = 0$, $y'(0) = 1$

[10 marks]

3. (a) Consider the following initial value problem

$$\frac{dy}{dx} = -2x - y \qquad \text{with} \quad y(0) = -1$$

- i. Find the exact solution of the differential equation at x = 0.2 [3 marks]
- ii. Use the **modified Euler's** method with h = 0.1 to approximate y(0.2). [7 marks]
- (b) The Adams Fourth-Order Formula is given by the formula

$$y_{k+1} = y_k + \frac{h}{24} \left(55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3} \right)$$

Given that y(0.3) = -0.82245 for the differential equation

$$\frac{dy}{dx} = -2x - y \qquad \text{with} \quad y(0) = -1$$

use the above formula with h = 0.1 to compute y(0.4) and compare your result with the exact solution at x = 0.4 [10 marks]

QUESTION 4

4. (a) The function u satisfies the equation

$$u_{xx}=u_{tt}$$

with boundary conditions of u = 0 at x = 0 and u = 0 at x = 1, and with initial conditions

$$u = \sin(\pi x)$$
, $u_t = 0$, for $0 \le x \le 1$

Write down the corresponding finite difference problem based on the central difference approximation of the derivatives, stating the [10 marks] boundary conditions in terms of the mesh points.

(b) Consider the Laplace equation over a unit square region $\{(x,y):\ 0< x<1,\ 0\leq y\leq 1\}:$

$$u_{xx} + u_{yy} = 0$$

$$u(x,0) = 0 , \quad u(x,1) = 1; \qquad 0 \le x \le 1;$$

$$u(0,y) = 0, \quad u(1,y) = 0; \qquad 0 \le y \le 1$$

- i. Using h = k = 1/4, write down the corresponding difference problem based on the five-point formula, stating the boundary conditions in terms of the mesh points. [6 marks]
- ii. Determine the system of equations to be used to solve the problem and write them in matrix form. [4 marks]

5. (a) Consider a finite difference solution of the Poisson equation

$$u_{xx} + u_{yy} = x + y$$

on the unite square using the boundary conditions and mesh points shown on Figure 1 above. Using the second order centered difference scheme compute the approximate value of the solution at the centre of the square. [10 marks]

(b) Use the 4th-order Runge-Kutta method to solve the following initial value problem with h = 0.1 to estimate the given y(0.1) and z(0.1); [10 marks]

$$y' = z + 1 \qquad y(0) = 1$$

6. Consider the parabolic differential equation

$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 \le x \le 1, \quad t > 0$$
$$u(0, t) = 0, \quad u(1, t) = 0, \quad t > 0$$
$$u(x, 0) = \cos 2\pi x, \quad 0 \le x \le 1$$

If an $O(k^2 + h^2)$ numerical method is constructed using the central difference quotient to approximate u_t and the usual difference quotient to approximate u_{xx} ,

- (a) Write down the finite difference scheme for the problem. [10 marks]
- (b) Show that the method has the matrix form

$$\mathbf{u}^{(j+1)} = \mathbf{u}^{(j-1)} + A\mathbf{u}^{(j)}$$
 for each $j = 0, 1, 2, ...$

where $\mathbf{u}^{(j)} = (u_{1,j}, u_{2,j}, \dots, u_{m-1,j})^T$ and A is a tridiagonal matrix. [10 marks]

7. (a) Consider the differential equation

$$\frac{dy}{dx} = x + y + xy$$
 with $y(0) = 1$

- i. Use the Taylor series method with terms through to x^3 to approximate y(0.1). [8 marks]
- ii. Use the Fourth Order Runge-Kutta method to approximate y(0.1) using a step size of h = 0.1. [8 marks]
- (b) Write the following Ordinary Differential equation

$$y''' + 3y''y + 6(y')^2 + 2y = 3x$$

with y(0)=1 , y'(0)=2 , y''(0)=3 as a system of first order differential equations. $\left[y'=\frac{dy}{dx}\right]$ [4 marks]