UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER

: DYNAMICS II

COURSE NUMBER

: M 355

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. Use the following definition

$$[F,G] = \sum_{\alpha} \left(\frac{\partial F}{\partial q_{\alpha}} \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial F}{\partial p_{\alpha}} \frac{\partial G}{\partial q_{\alpha}} \right)$$

of a Poisson bracket between two physical quantities $F(q_{\alpha}, p_{\alpha}, t)$ and $G(q_{\alpha}, p_{\alpha}, t)$ to prove the following properties.

(a) [u, v] = -[v, u] [3 marks]

(b) [u, u] = 0 [2 marks]

(c) [u, v + w] = [u, v] + [u, w] [3 marks]

(d) [u, vw] = v[u, w] + [u, v]w [3 marks]

(e) $[q_{\alpha}, p_{\beta}] = \delta_{\alpha\beta}$ [3 marks]

(f) $\dot{q}_{\alpha} = [q_{\alpha}, H]$ [3 marks]

(g) $\dot{p}_{\alpha} = [p_{\alpha}, H]$ [3 marks]

where q_{α} are generalized coordinates, p_{α} are generalized momenta, H is the Hamiltonian function and $\delta_{\alpha\beta}$ is the Kronecker delta.

2. Consider the system of massless pulleys connected by a light inextensible string of length l as shown in Figure 1 Taking q_1 and q_2 to be the generalized coordi-

Figure 1:

nates, show that the equations of motion for the system are given by

$$(M_1 + M_3)\ddot{q}_1 + 2M_3\ddot{q}_2 = (M_1 - M_3)g$$

$$2M_3\ddot{q}_1 + (M_2 + 4M_3)\ddot{q}_2 = (M_2 - 2M_3)g$$

[20 marks]

3. (a) Find the extremal curve of

$$I = \int_0^{\frac{\pi}{2}} (y^2 - (y')^2 - 2y\sin x) dx$$

subject to the boundary conditions y(0) = 1 and $y(\frac{\pi}{2}) = 2$. [10 Marks]

(b) Find the extremal curve of

$$I = \int_0^{\frac{\pi}{4}} (y_1^2 + y_1' y_2' + (y_2')^2) dx$$

subject to the boundary conditions $y_1(0) = 1$ and $y_1(\frac{\pi}{4}) = 2$ and $y_2(0) = \frac{3}{2}$ and $y_2(\frac{\pi}{4})$ is not given. [10 Marks]

QUESTION 4

4. (a) Given the following Lagrangian function

$$L = rac{1}{2}m\dot{x}_1^2 + rac{1}{2}m\dot{x}_2^2 - rac{1}{2}\kappa(x_1^2 + x_2^2) - rac{1}{2}\kappa(x_2 - x_1)^2$$

for a certain mechanical system.

i. Find the corresponding Hamiltonian function.

[6 marks]

- ii. Using Hamilton's equations obtain the equations of motion for the system. [6 marks]
- (b) The Hamiltonian for a system is given by

$$H = \frac{1}{a}p^a$$

where a is a constant. Given that p is a generalized momentum conjugate to the generalized coordinate q, prove that the Lagrangian for the system is given by

$$L = \left(\frac{a-1}{a}\right) \dot{q}^{\frac{a}{a-1}}$$

[8 marks]

5. (a) Given that

$$A_1 = \frac{1}{4}(x^2 + p_x^2 - y^2 - p_y^2), \quad A_2 = \frac{1}{2}(xy + p_x p_y)$$

 $A_3 = \frac{1}{2}(xp_y - yp_x), \quad A_4 = x^2 + y^2 + p_x^2 + p_y^2$

Evaluate the following Poisson brackets

(i) $[A_1, A_2]$ [3 marks]

(ii) $[A_2, A_3]$ [3 marks]

(iii) $[A_1, A_4]$ [3 marks]

(b) Using Poisson brackets, show directly that the transformation

$$Q = \ln\left(\frac{\sin p}{q}\right), \quad P = q \cot p$$

is canonical. [5 marks]

(c) For what values of the constant parameters α and β are the following transformations canonical

(i)
$$Q = q^{\alpha} \cos \beta p$$
, $P = q^{\alpha} \sin \beta p$ [3 marks]

(ii)
$$Q = q^{\alpha}e^{\beta p}$$
, $P = q^{\alpha}e^{-\beta p}$ [3 marks]

6. (a) If the Hamiltonian H is defined by the relation $H=\sum_{\alpha=1}^n p_\alpha \dot{q}_\alpha - L$ where H is the Hamiltonian and L is the Lagrangian, show that p_α and q_α are related by the equations

$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$
, $\dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}}$ and $\dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$

[6 marks]

(b) The Lagrangian function of a system is given by

$$L = \frac{1}{2}M\dot{R}^2 + \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\theta}^2) - \frac{1}{2}k(r-b)^2$$

- (i) Determine the cyclic (ignorable) coordinates. [2 marks]
- (ii) Derive the Hamiltonian for the the system. [5 marks]
- (iii) Using the Hamiltonian formulation show that the equation of motion corresponding to r is

$$\mu(\ddot{r}-r\dot{\theta}^2)+k(r-b)=0$$

[7 marks]

QUESTION 7

7. (a) Suppose that the kinetic energy T does NOT contain the time t explicitly and that the potential V depends on q_{α} but does **NOT** depend on \dot{q}_{α} . Prove that

$$\sum_{\alpha=1}^{n} \dot{q}_{\alpha} \frac{\partial T}{\partial \dot{q}_{\alpha}} = 2T$$

[6 marks]

- (b) Consider a system whose dynamic behaviour is defined by the Hamiltonian $H=H(q_{\alpha},p_{\alpha},t).$
 - (i) Prove that the equation of motion for a dynamic variable $f(q_{\alpha},p_{\alpha},t)$ is

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + [f, H]$$

[7 marks]

(ii) Use the above equation (i) to show that if the Hamiltonian does not depend on time t, then it is conserved, i.e H is a constant of motion.[7 marks]