UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2006/7

BSc. / BEd. / B.A.S.S. III

TITLE OF PAPER

: DYNAMICS II

COURSE NUMBER

: M 355

TIME ALLOWED

: THREE (3) HOURS

<u>INSTRUCTIONS</u>

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) Use the Lagrangian formulation to find the equations of motion for a system with kinetic and potential energy given by

$$T = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + \frac{1}{2}m_1(a^2\dot{\theta}^2 + 2a\dot{x}\dot{\theta}\cos\theta)$$

$$V = kx^2 + m_1ga(1 - \cos\theta)$$

where a, k, g, m_1 and m_2 are constants.

[14 marks]

(b) Given that the Lagrangian of a system is given by

$$L = \frac{m}{2}\dot{q}^2 - \frac{1}{2}kq^2 + \lambda q\dot{q}$$

where k, m and λ are constants. Show that the Hamiltonian function corresponding to this Lagrangian is

$$H = \frac{(p - \lambda q)^2}{2m} + \frac{1}{2}kq^2$$

[6 marks]

QUESTION 2

2. The Lagrangian function for a double pendulum is given by

$$L = \frac{1}{2}mb^{2}(2\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2} + 2\dot{\theta}_{1}\dot{\theta}_{2}\cos(\theta_{1} - \theta_{2}) + mgb(2\cos\theta_{1} + \cos\theta_{2})$$

(a) Find the Canonical momenta p_1 and p_2 .

[4 marks]

(b) Show that the Lagrangian can be written in a convenient form as

$$L = \frac{1}{2}(p_1\dot{\theta_1} + p_2\dot{\theta_2}) + mgb(2\cos\theta_1 + \cos\theta_2)$$

[8 marks]

(c) Prove that the Hamiltonian is then

$$H = \frac{1}{4mb^2} \frac{p_1^2 + 2p_2^2 - 2p_1p_2\cos(\theta_1 - \theta_2)}{1 - \frac{1}{2}\cos^2(\theta_1 - \theta_2)} - mgb(2\cos\theta_1 + \cos\theta_2)$$

[8 marks]

QUESTION 3

3. The Lagrangian for a system is given by

$$L = ml^{2} \left[\frac{\dot{\theta}^{2}}{2} + \sin^{2}\theta \left(\frac{\dot{\phi}^{2}}{2} - \omega \dot{\phi} \right) \right] - mgl(1 - \cos\theta)$$

where m, l and g are constants.

(a) Find the Hamiltonian.

[12 marks]

(b) Write the equations of motion for p_{θ} , θ , p_{ϕ} , ϕ

[8 marks]

QUESTION 4

4. (a) If the Hamiltonian

$$H = \sum_{\alpha=1}^{n} p_{\alpha} \dot{q}_{\alpha} - L$$

is expressed as a function of the generalised coordinates q_{α} and the momenta p_{α} ONLY and DOES NOT contain the time t explicitly, prove that

$$\dot{q}_{lpha} = rac{\partial H}{\partial p_{lpha}} \;\; , \;\;\;\; \dot{p}_{lpha} = -rac{\partial H}{\partial q_{lpha}}$$

[8 marks]

(b) Given that the transformation equations for a mechanical system are given by $\mathbf{r}_{\nu} = \mathbf{r}_{\nu}(q_1, q_2, \dots, q_n)$, where q_{α} are generalized coordinates. Prove that,

(i)

$$\frac{\partial \dot{\mathbf{r}}_{\nu}}{\partial \dot{q}_{\alpha}} = \frac{\partial \mathbf{r}_{\nu}}{\partial q_{\alpha}}$$

(ii)

$$\sum_{\alpha=1}^{n} \dot{q}_{\alpha} \frac{\partial T}{\partial \dot{q}_{\alpha}} = 2T$$

where T is the kinetic energy.

[6, 6 marks]

QUESTION 5

5. (a) Consider the following three functions L_1 , L_2 and L_3 and the Hamiltonian H for a system with three degrees of freedom:

$$L_1 = p_2q_3 - p_3q_2$$
 $L_2 = p_3q_1 - p_1q_3$
 $L_3 = p_1q_2 - p_2q_1$
 $H = \frac{1}{2m}(p_1^2 + p_2^2 + p_3^2) + \sqrt{q_1^2 + q_2^2 + q_3^2}$

Show that

i. $[L_1, H] = 0$ [7 marks]

ii. $[L_1, L_2] = -L_3$ [7 marks]

(b) By any method you choose, show that the following transformation is canonical

$$Q = \ln\left(\frac{\sin p}{q}\right)$$
 , $P = q \cot p$

[6 marks]

QUESTION 6

6. Use the Beltrami identity $(F-y'\frac{\partial F}{\partial y'}={
m Constant}$) to show that the extremum for the integral

$$I = \int_0^a \sqrt{\frac{1+y'^2}{2y}} dx$$

satisfies the differential equation

$$y' = \sqrt{\frac{2c - y}{y}}.$$

By making the substitution $y=2c\sin^2\theta$, show that the solution of the differential equation is $x=c(2\theta-\sin2\theta)$ [20 marks]

QUESTION 7

- 7. Find the curve that minimizes/maximizes the following functions
 - (a) $\int_0^{\frac{\pi}{2}} (y' \cos x)^2 dx$ $y(0) = 1, \quad y\left(\frac{\pi}{2}\right) = 0$ [6 marks]
 - (b) Find the extremal curve of

$$I = \int_0^{\frac{\pi}{4}} (y_1^2 + y_1' y_2' + (y_2')^2) dx$$

subject to the boundary conditions $y_1(0) = 1$ and $y_1\left(\frac{\pi}{4}\right) = 2$ and $y_2(0) = \frac{3}{2}$ and $y_2\left(\frac{\pi}{4}\right)$ is not given. [7 Marks]

(c)
$$\int_{x=1}^e (4y+xy'^2)dx$$
 if $y(e)=0,$ and $y(1)$ is not prescribed. [7 marks]