UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007

 $B.Sc. \ / \ B.Ed. \ / \ B.A.S.S. \ III$

TITLE OF PAPER : REAL ANALYSIS

COURSE NUMBER : M331

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- (a) Let S be a nonempty subset of \mathbb{R} .
 - (i) Define inf S; [2]
 - (ii) Prove that if S has a lower bound, then it has an infimum. [12]
- (b) Let S be the set $S = \{1 \frac{1}{n} : n \in \mathbb{N}\}$. Show that $\inf S = 0$ and $\sup S = 1$. [6]

QUESTION 2

- (a) (i) Define what is meant by saying that a sequence $\{a_n\}$ converges to a limit l.
 - (ii) Using the definition, show that $\lim_{n\to\infty} \frac{n+2}{2n+4} = \frac{1}{2}$ [6]
- (b) Prove that a nonempty subset of \mathbb{R} which is bounded below can contain at most one of its lower bounds. [3]
- (c) Let S be the set $S = \{x \in \mathbb{Q} : x^2 < 2\}$. Show that $\inf S = -\sqrt{2}$. [5]
- (d) Prove that if a sequence of real numbers is convergent, then its limit is unique.

 [6]

QUESTION 3

(a) Which of the following sequences are convergent? For convergent sequences, find the limit (state clearly any facts about limits that you use).

(i)
$$a_n = \frac{3n^2 - n + 3}{5n^2 - 13}$$

(ii) $a_n = \sqrt{n + \frac{1}{n}}$. [6]

(b) Let A and B be nonempty subsets of \mathbb{R} . Define $A+B=\{a+b:a\in A,b\in B\}$ and $cA=\{ca:a\in A\}$, where c is a real number. Prove or disprove the following:

- (i) If A and B are bounded below, then inf(A + B) = inf A + inf B.
- (ii) If c < 0, then sup(cA) = c infA. [14]

QUESTION 4

(a) Find $\lim_{x\to c} f(x)$ for each of the following functions and values of c:

(i)
$$f(x) = \begin{cases} \frac{x^4 - 9}{x^2 - 3} & \text{if } x^2 \neq 3\\ 12 & \text{if } x^2 = 3; \end{cases}$$

(ii)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ -1 & \text{if } x = 0. \end{cases}$$
 [6]

- (b) (i) What is meant by saying that a function f(x) is continuous at a point c?

 (You may assume that f is defined on an interval (a, b) that contains c).
 - (ii) Show that if f(x) and g(x) are both continuous at c, then so is their product. [7]
- (c) Which of the following functions is continuous at the point 0? Give reasons for your answers.

(i)
$$f(x) = \begin{cases} x \cos \frac{1}{x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0; \end{cases}$$

(ii) $f(x) = [x^2]$, where [z] is the integer part of x. [7]

QUESTION 5

- (a) Let $f:[a,b] \longrightarrow \mathbb{R}$ and let $c \in (a,b)$. What is meant by saying that f is differentiable at the point c? Show that if f is differentiable at c, then f is continuous at c.
- (b) State and prove Rolle's Theorem. Use Rolle's theorem to deduce the Mean Value Theorem for a differentiable function f(x) defined on an interval [a, b].[7]
- (c) Use the Mean Value Theorem to show that $|\exp x \exp y| \le e|x-y|$ for all $x, y \in [0, 1]$, where $e = \exp 1$.

QUESTION 6

- (a) Let $f:[a,b] \longrightarrow \mathbb{R}$. Explain how the Riemann integral $\int_a^b dx$ is defined using upper and lower sums. [10]
- (b) By considering the integral $\int_1^n \frac{1}{x^2} dx$ as $n \to \infty$, show that the series $\sum \frac{1}{n^2}$ is convergent. [10]

QUESTION 7

- (a) Suppose that $f:[a,b] \longrightarrow \mathbb{R}$ is continuous and $F(x) = \int_a^x f(t) dt + c$ for all $a \le x \le b$. Show that F(x) is differentiable in the interval [a,b], with derivative DF(x) = f(x).
- (b) Let $g(x) = \int_0^{x^3} \exp(1 + 2\sin t) dt$. Show that g is differentiable for all x and find its derivative. [10]

END OF EXAMINATION