UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2007

B.Sc. / B.Ed. / B.A.S.S. III

TITLE OF PAPER

: Real Analysis

COURSE NUMBER

: M331

TIME ALLOWED

: THREE (3) HOURS

<u>INSTRUCTIONS</u>

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let S be a nonempty subset of \mathbb{R} .
 - (i) Define $\sup S$; [2]
 - (ii) Prove that if S has an upper bound, then it has a supremum. [12]
- (b) Let S be the set $S = \{1 \frac{1}{n} : n \in \mathbb{N}\}$. Show that $\inf S = 0$ and $\sup S = 1$. [6]

QUESTION 2

- (a) (i) Prove that every sequence of real numbers has a monotone subsequence.[8]
 - (ii) Hence, or otherwise, prove the Bolzano Weiestrass theorem. [4]
- (b) (i) What is a monotone sequence? [2]
 - (ii) Show that the sequence defined by the recurrence relation

$$a_1 = \sqrt{2}$$
, $a_n = \sqrt{a_{n-1} + 2}$ for all $n = 2, 3, 4, ...$

is convergent, and find its limit.

QUESTION 3

- (a) Let A be a nonempty bounded set of real numbers. Prove that if $\inf A$ does not belong to A, then there exists a decreasing sequence $\{a_n\} \subset A$ such that $\inf A < a_n$ for all $n \in \mathbb{N}$.
- (b) (i) Define the *limit superior* and the *limit inferior* of a bounded sequence of real numbers. [3]
 - (ii) Using the definition in (i), find

$$\lim_{n\to\infty}\sup\big\{-2\frac{1}{2},0,1,3\frac{1}{2},-2\frac{1}{3},0,1,3\frac{1}{3},-2\frac{1}{4},0,1,3\frac{1}{4},\ldots\big\}.$$

[3]

[6]

(c) Let A and B be nonempty subsets of \mathbb{R} , and define $A+B=\{a+b:a\in A,b\in B\}$. Prove or disprove that if A and B are bounded below, then $\inf(A+B)=\inf A+\inf B$.

QUESTION 4

(a) Find $\lim_{x\to c} f(x)$ for each of the following functions and values of c:

(i)
$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5} & \text{if } x \neq 5 \\ 4 & \text{if } x = 5, \end{cases}$$

(ii)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

(b) (i) What is meant by saying that a function f(x) is continuous at a point c? (You may assume that f is defined on an interval (a, b) that contains c).

(ii) Show that if f(x) and g(x) are both continuous at c, then so is their product. [7]

[6]

(c) Which of the following functions is continuous at the point 0? Give reasons for your answers.

(i)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0, \end{cases}$$

(ii) f(x) = [x], where [x] is the integer part of x. [7]

QUESTION 5

- (a) Let $f:[a,b] \longrightarrow \mathbb{R}$ and let $c \in (a,b)$. What is meant by saying that f is differentiable at the point c? Show that if f is differentiable at c, then f is continuous at c.
 - b State and prove Rolle's Theorem. Use Rolle's theorem to deduce the Mean Value Theorem for a differentiable function f(x) defined on an interval [a, b].[7]
- (c) Use the Mean Value Theorem to show that $|\sin^2 x \sin^2 y| \le 2|x y|$ for all $x, y \in \mathbb{R}$.

QUESTION 6

- (a) Let $f:[a,b] \longrightarrow \mathbb{R}$. Explain how the Riemann integral $\int_a^b dx$ is defined using upper and lower sums. [10]
- (b) By considering the integral $\int_1^n \frac{1}{x^2} dx$ as $n \to \infty$, show that the series $\sum \frac{1}{n^2}$ is convergent.

QUESTION 7

- (a) Suppose that $f:[a,b] \longrightarrow \mathbb{R}$ is continuous and $F(x) = \int_a^x f(t) dt + c$ for all $a \le x \le b$. Show that F(x) is differentiable in the interval [a,b], with derivative DF(x) = f(x).
- (b) Let $g(x) = \int_0^{x^2} \ln(1 + 1/2\sin t) dt$. Show that g is differentiable for all x and find its derivative. [10]

END OF EXAMINATION