UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2007

B.Sc. III/B.Ed./B.A.S.S. III

TITLE OF PAPER: ABSTRACT ALGEBRA

COURSE NUMBER: M323

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Non-programmable calculators may be us

SPECIAL REQUIREMENTS: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Find the number of elements in each of the cyclic subgroups

(i) $< 30 > \text{ of } \mathbb{Z}_{42}$

[3 marks]

(ii) < 15 > of \mathbb{Z}_{48}

[3 marks]

(b) For \mathbb{Z}_{12} , find all the subgroups and give a lattice diagram

[7 marks]

(c) (i) Find all cosets of $H = \{0, 6, 12\}$ in \mathbb{Z}_{18}

[4 marks]

(ii) Show that \mathbb{Z}_6 and S_3 are not isomorphic

[3 marks]

Question 2

(a) Prove that every finite group of prime order is cyclic

[5 marks]

(b) Show that the set $G=\mathbb{Q}-\{0\}$ with respect to the operation

$$a*b = \frac{ab}{10}$$

is a group

[9 marks]

(c) Prove that if $(ab)^{-1} = a^{-1}b^{-1} \quad \forall a,b \in G$, where G is a group then G is abelian.

[6 marks]

- (a) If $\varphi: G \longrightarrow H$ is an isomorphism of groups and e is the identity of G then
 - (i) $(e)\varphi$ is the identity element in H
 - (ii) $(a^n)\varphi = [(a)\varphi]^n \quad \forall n \in \mathbb{Z}^+$

[12 marks]

(b) (i) State Lagrange's theorem

[2 marks]

(ii) Using b(i) above or otherwise, show that \mathbb{Z}_p has no proper subgroups if p is a prime number

[6 marks]

Question 4

(a) Prove that if (a, s) = 1 and (b, s) = 1 then (ab, s) = 1 $\forall a, b, s \in \mathbb{Z}$

[6 marks]

(b) Give a single numerical example to **disprove** the following; "If $ax \equiv bx \pmod{n}$ then $a \equiv b \pmod{n}$ $a, b, n \in \mathbb{Z}$ "

[4 marks]

(c) Prove that every cyclic subgroup of a cyclic group is cyclic

[10 marks]

(a) Solve the following system

 $2x \equiv 1 \pmod{5}$ $3x \equiv 4 \pmod{7}$

[7 marks]

- (b) Find the number of generators of cyclic groups of order 8 and 60 [7 marks]
- (c) Prove that a non-abelian group of order 2p, p prime contains at least one element of order p.

 [6 marks]

Question 6

(a) Prove that every cyclic group is abelian.

[5 marks]

(b) Let n be a positive integer greater than 1 and let, for $a,b,\in\mathbb{Z}$

$$a R B \Leftrightarrow a \equiv b \pmod{n}$$

Show that R is an equivalence relation on \mathbb{Z} .

[7 marks]

- (c) Let H be the subset of $\{\rho_0 = (1), \rho_1 = (123), \rho_2 = (132)\}$ of the symmetric group S_3
 - (i) Show that H is a subgroup of S_3
 - (ii) Show that H is a cyclic

[8 marks]

(a) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 2 & 7 & 8 & 6 & 5 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 7 & 2 & 3 & 8 & 5 & 6 \end{pmatrix}$
(i) Express α and β as products of disjoint cycles and then as products of

(i) Express α and β as products of disjoint cycles and then as products of transpositions. For each permutation say whether it is an even permutation or an odd one.

[8 marks]

(ii) Compute $\alpha^{-1}, \beta^{-1}\alpha, (\alpha\beta)^{-1}$

[6 marks]

(b) Find the greatest common divisor d of the number 204 and 54 and express it in the form

$$d = 204x + 54y$$

for some $x, y \in \mathbb{Z}$

[6 marks]