University of Swaziland

Final Examination, May 2007

BSc III, Bass III, BEd III

Title of Paper : Complex Analysis

Course Number

: M313

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

2. Each question is worth 20%.

3. Answer ANY FIVE questions.

4. Show all your working.

This paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Question 1

- (a) Find all fourth roots of -81 and express in the form a+ib. [10 marks]
- (b) Consider the real function $u = x^2 + 2xy y^2$.
 - (i) Show that u is harmonic. [2 marks]
 - (ii) Find the harmonic conjugate of u. [4 marks]
 - (iii) Hence find the analytic complex function f(z) = u + iv and express in terms of z. [4 marks]

Question 2

- (a) Use complex-number methods to express $\cos^6 \theta$ in terms of cosines of multiples of θ . [8 marks]
- (b) Use the theory of residues to evaluate

$$\int_{-\pi}^{\pi} \frac{\cos \theta \, \mathrm{d}\theta}{5 + 4\cos \theta}.$$
 [12 marks]

Question 3

- (a) Consider the complex function $f(z) = \frac{z}{z+i}$.
 - (i) Find the first five non-zero terms of the Taylor expansion of f(z) about z = i. [10 marks]
 - (ii) Determine the radius of convergence of the series obtained in (i). [2 marks]
- (b) Evaluate

$$\oint_C \bar{z}^2 \, \mathrm{d}z,$$

where C is the circle |z-1|=1, traversed positively.

Note: Throughout this paper the variable z = x + iy is complex, with real x and y, and $i^2 = -1$.

Question 4

- (a) Consider the complex number $\lambda = 2ie^{\pi i/3} + 2e^{-2\pi i/3}$.
 - (i) Express λ in the form a + ib. [5 marks]
 - (ii) Hence state the quadrant in which λ is located and show the $|\lambda| = 2\sqrt{2}$. [5 marks]
- (b) Solve for the principal value of

$$\cos z = 2$$

and express in the form a + ib.

[7 marks]

(c) Evaluate $\int_0^{i\sqrt{\pi}} z \sin(z^2) dz$ along any path. [3 marks]

Question 5

- (a) Find the Laurent expansion of $f(z) = \frac{-2z+3}{z^2-3z+2}$ valid in the region
 - (i) |z| < 1,

[4 marks]

(ii) |z| > 2.

[4 marks]

- (b) Consider the complex function $f(z) = \frac{25(z^2 2z)}{(z+1)^2(z^2+4)}$
 - (i) Locate and classify all the singular points of f(z). [2 marks]
 - (ii) Find the value of the residue of f(z) at each of the singular points. [7 marks]
 - (iii) Hence evaluate

$$\oint_C \frac{25(z^2 - 2z)}{(z+1)^2(z^2+4)} \mathrm{d}z$$

where C is the ellipse $x^2 + 4y^2 = 4$ traversed positively.

[3 marks]

Question 6

(a) Prove that

$$|\sin z|^2 = \sin^2 x + \sinh^2 y.$$
 [7 marks]

(b) Evaluate $\int_{i}^{2-i} (3xy+iy)dz$ along the straight line joining z=i and z=2-i.

[7 marks]

(c) Find all values of $\omega = \ln\left(\frac{2i}{1-i\sqrt{3}}\right)$ and express in the form a+ib. [6 marks]

Question 7

- (a) Consider the complex function $f(z) = ze^{-\bar{z}}$.
 - (i) Determine the functions u(x,y) = Re(f) and v(x,y) = Im(f). [6 marks]
 - (ii) Test whether the Cauchy-Riemann equations are satisfied and hence discuss the analyticity of f(z).

 [6 marks]
- (b) Use the theory of residues to evaluate

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^4 + 4}.$$
 [8 marks]

..... END OF PAPER