UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2006/2007

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER : VECTOR ANALYSIS

COURSE NUMBER

: M312

TIME ALLOWED

: THREE (3) HOURS

<u>INSTRUCTIONS</u>

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Part of a railway line (superimposed on a rectangular coordinate system) follows the line y = -x for $x \le 0$, then turns to reach the point (3,0) following a cubic curve. Find the equation of this curve if the track is *continuous*, *smooth*, and has *continuous curvature*. [10]
- (b) In each of the following, find the arc length parameter along the curve from the point where t=0 by evaluating the integral

$$s = \int_{\tau=0}^{t} |\mathbf{v}(\tau)| \mathrm{d}\tau.$$

Then find the length of the indicated portion of the curve.

(i)
$$\mathbf{r}(t) = (4\cos t)\hat{\mathbf{i}} + (4\sin t)\hat{\mathbf{j}} + 3t\hat{\mathbf{k}}, \qquad 0 \le t \le \pi/2,$$

(ii) $\mathbf{r}(t) = (e^t \cos t)\hat{\mathbf{i}} + (e^t \sin t)\hat{\mathbf{j}} + e^t\hat{\mathbf{k}}, \qquad -\ln 4 \le t \le 0.$ [10]

QUESTION 2

(a) Find the volume of the ellipsoid

$$x = a\rho \sin \phi \cos \theta$$
$$y = b\rho \sin \phi \sin \theta$$
$$z = c\rho \cos \phi,$$

where
$$a, b, c \neq 0$$
; $\rho \geq 0$, $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$. [12]

(b) Find the angle between the planes

$$x + y = 1 \qquad \text{and} \qquad 2x + y - 2z = 2.$$

QUESTION 3

- (a) Find the tangent plane and the normal line to the surface $x^2y + xyz z^2 = 1$ at the point $P_0(1, 1, 3)$. [10]
- (b) Give a formula $\mathbf{F} = M(x,y)\hat{\mathbf{i}} + N(x,y)\hat{\mathbf{j}}$ for the vector field in the plane with the properties that $\mathbf{F} = \mathbf{0}$ at the origin and that at any other point (a,b) in the plane, \mathbf{F} is tangent to the circle $x^2 + y^2 = a^2 + b^2$ and points in the clockwise direction, with magnitude $|\mathbf{F}| = \sqrt{a^2 + b^2}$. [10]

QUESTION 4

- (a) Express the following in cylindrical coordinates:
 - (i) $\operatorname{grad} \phi$;
 - (ii) $\operatorname{div} F$;
 - (iii) the volume element dV, and
 - (iv) the Jacobian.

[10]

(b) Repeat (a) for spherical coordinates.

[10]

QUESTION 5

- (a) Find the work done in moving a particle once around an ellipse C in the xy-plane, if the ellipse has center at the origin, with semi-major axes and semi-minor axes 4 and 3, respectively. (You may assume that the ellipse is traversed in the counterclockwise direction).
- (b) (i) Prove that $\int_{(1,2)}^{(3,4)} [(6xy^2 y^3) dx + (6x^2y 3xy^2) dy]$ is independent of the path joining (1,2) and (3,4).
 - (ii) Evaluate the integral in (i). [10]

QUESTION 6

- (a) Evaluate $\iint_S \mathbf{A} \cdot \hat{\mathbf{n}} \, dS$, where $\mathbf{A} = xy\hat{\mathbf{i}} x^2\hat{\mathbf{j}} + (x+z)\hat{\mathbf{k}}$, S is that portion of the plane 2x + 2y + z = 6 included in the first octant, and $\hat{\mathbf{n}}$ is the unit normal to S.
- (b) Verify the divergence theorem for $\mathbf{A} = (2x z)\hat{\mathbf{i}} + x^2y\hat{\mathbf{j}} xz^2\hat{\mathbf{k}}$ taken over the region bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [10]

QUESTION 7

- (a) (i) Prove that a necessary and sufficient condition that $A_1 dx + A_2 dy + A_3 dz = d\phi$ is an exact differential is that $\nabla \times \mathbf{A} = \mathbf{0}$, where $\mathbf{A} = A_1 \hat{\mathbf{i}} + A_2 \hat{\mathbf{i}} + A_3 \hat{\mathbf{i}}$.
 - (ii) Show that for the case in (i),

$$\int_{x_1,y_1,z_1}^{x_2,y_2,z_2} \left[A_1 \, \mathrm{d}x + A_2 \, \mathrm{d}y + A_3 \, \mathrm{d}z \right] = \int_{x_1,y_1,z_1}^{x_2,y_2,z_2} \mathrm{d}\phi = \phi(x_2,y_2,z_2) - \phi(x_1,y_1,z_1)$$
[12]

(b) Verify Stokes' theorem for $\mathbf{A} = 3y\hat{\mathbf{i}} - xz\hat{\mathbf{j}} + yz^2\hat{\mathbf{k}}$, where S is the surface of the paraboloid $2z = x^2 + y^2$ bounded by z = 2 and C is its boundary. [8]

END OF EXAMINATION