UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2006/2007

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER

: DYNAMICS I

COURSE NUMBER

: M255

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Evaluate $\int_{(0,1)}^{(1,2)} [(x^2 y) dx + (y^2 + x) dy]$ along:
 - (i) the straight line from (0,1) to (1,2);
 - (ii) the straight lines from (0,1) to (1,1) and then from (1,1) to (1,2);
 - (iii) the parabola x = t, $y = t^+1$. [10]
- (b) Show that $\oint_C \frac{x dy y dx}{x^2 + y^2} = 2\pi$, where C is the circle $x^2 + y^2 = a^2$ traversed in the counterclockwise direction. [10]

QUESTION 2

The position vector of a moving particle is given by

$$\mathbf{r} = 2\cos(t)\hat{\mathbf{i}} + 2\sin(t)\hat{\mathbf{j}} + (2t-1)\hat{\mathbf{k}}.$$

Find

- (a) the velocity
- (b) the speed
- (c) the acceleration
- (d) the magnitude of the acceleration
- (e) the unit tangent vector
- (f) the curvature
- (g) the radius of curvature
- (h) the unit principal normal

- (i) the normal component of acceleration
- (j) the unit binormal vector.

[20]

QUESTION 3

- (a) Verify Green's theorem in the plane for the vector field $(x^2 xy^3)\mathbf{\hat{i}} + (y^2 2xy)\mathbf{\hat{j}}$ for a square with vertices (0,0), (2,0), (2,2), (0,2). [10 marks]
- (b) Find the equation of the plane that contains the point (2,1,0) and has a normal vector $\mathbf{n} = (1,2,3)$. [6 marks]
- (c) For what values of a are $A = a\mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $B = 2a\mathbf{i} + a\mathbf{j} 4\mathbf{k}$ perpendicular. [4 marks]

QUESTION 4

(a) In cylindrical coordinates (ρ, θ, z) , the position vector of an arbitrary point (x, y, z) is given by

$$\mathbf{r} = \rho \cos \theta \hat{\mathbf{i}} + \rho \sin \theta \hat{\mathbf{j}} + z \hat{\mathbf{k}}.$$

Show that, in this coordinate system,

(i) the velocity is given by

$$\underline{\mathbf{v}} = \frac{d\mathbf{r}}{dt} = \dot{\rho}\hat{\rho} + \rho\dot{\theta}\hat{\theta} + \dot{z}\hat{\mathbf{k}}$$

(ii) the acceleration is given by

$$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = (\ddot{\rho} - \rho\dot{\theta}^2)\hat{\rho} + (\rho\ddot{\theta} + 2\dot{\rho}\dot{\theta})\hat{\theta} + \ddot{z}\hat{\mathbf{k}}.$$

[10,2]

(b) If $\nabla \phi = 2xyz^3 \hat{\mathbf{i}} + x^2z^3 \hat{\mathbf{j}} + 3x^2yz^3 \hat{\mathbf{k}}$ and if $\phi(1, -2, 2) = 4$, find $\phi(x, y, z)$. [8]

QUESTION 5

(a) A particle of unit mass is thrown vertically upwards with initial speed V, and the air resistance at speed v is κv^2 per unit mass where κ is a constant. Show that H, the maximum height reached, is given by

$$H = \frac{1}{2\kappa} \ln \left(\frac{g + \kappa V^2}{g} \right)$$

[10 marks]

(b) From a point O, at height h above sea level, a particle is projected under gravity with a velocity of magnitude $\frac{3}{2}\sqrt{gh}$. Find the two possible angles of projection if the particle strikes the sea at horizontal distance 3h from 0. [10 marks]

QUESTION 6

(a) A particle is projected from the origin with initial velocity $-4\hat{\mathbf{i}}$ and acceleration $(3-t)\hat{\mathbf{i}}$, where t is measured in seconds. Show that the particle reverses direction after 2 seconds and after 4 seconds. [5]

Also find the total distance traveled by the particle in

- (i) 2 seconds
- (ii) 4 seconds

(iii) 6 seconds
$$[1,1,1]$$

- (b) At time t = 0 a particle of mass m is located at z = 0 and is traveling vertically downwards with speed v_0 . If the resisting force is $-\beta v$, where v is the speed at time t, find
 - (i) the speed at any time t,

- (ii) the distance traveled after time t, and
- (iii) the acceleration at any time t.

[6,4,2]

QUESTION 7

((a) Suppose that a point A has position vector \mathbf{a} and a point B has position vector \mathbf{b} . Show that the position vector \mathbf{r} of the point R that divides the line AB in the ratio $\alpha:\beta$ is given by

$$\mathbf{r} = \frac{\beta \mathbf{a} + \alpha \mathbf{b}}{\alpha + \beta}.$$

Hence, deduce the midpoint formula.

[7 marks]

(b) If $\mathbf{r}(t) = \mathbf{a}\cos(\omega t) + \mathbf{b}\sin(\omega t)$, where \mathbf{a} and \mathbf{b} are constant non-collinear vectors and ω is a constant scalar, prove that

(i)
$$\mathbf{r} \times \frac{d\mathbf{r}}{dt} = \omega(\mathbf{a} \times \mathbf{b})$$

(ii) $\frac{d^2\mathbf{r}}{dt^2} + \omega^2\mathbf{r} = \mathbf{0}$. [8 marks]

(c) If $\phi = x^2yz^3$ and $\mathbf{A} = xz\mathbf{i} - y^2\mathbf{j} + 2x^2y\mathbf{k}$, find

$$div(\phi \mathbf{A})$$

[5 marks]

END OF EXAMINATION