UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2007

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER

: FOUNDATIONS OF MATHEMATICS

COURSE NUMBER

M231

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

(a)	Negate the following statement: "The function f of one variable is a confunction if and only if for all real numbers x and y and for all real numbers	
	with $0 \le t \le 1$, it follows that $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$."	[6]
(b)	Which of the following statements are true?	
	(i) The square root of any integer is a non-negative real number.	
	(ii) If $x < 1$, then $x^2 < 1$.	[6]
(c)	For each of the following statements, write the converse and the contrapositi	ve:
	(i) A quadrilateral is a parallelogram if its opposite sides are parallel.	
	(ii) Congruent triangles are equal in area.	[8]
QUESTION 2		
(a)	Prove that in any set of n distinct integers, there must be two whose different	nce
	is divisible by $n-1$.	10]
(c)	Define	
	(i) a partially ordered set,	
	(ii) a totally ordered set.	[7]

(d) Give an example of a partially ordered set that is not totally ordered.

[3]

QUESTION 3

(a) Define an order on the set \mathbb{Z} .

[2]

(b) Prove that there is no integer between 0 and 1.

- [5]
- (c) Prove that a set S of positive integers which includes 1, and which includes n+1 whenever it includes n, must include every positive integer. [5]
- (d) Prove by induction that $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$.

Deduce formulae for

(i)
$$1.1 + 2.3 + 3.5 + 4.7 + \ldots + n(2n-1)$$
 and

(ii)
$$1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2$$
.

[8]

QUESTION 4

(a) The Fibonacci sequence is a sequence of integers $u_1, u_2, \ldots, u_n, u_{n+1}, \ldots$, such that $u_1 = 1, u_2 = 1$ and

$$u_{n+1} = u_n + u_{n-1}$$

for all $n \ge 1$. The beginning of this sequence is $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$ Prove by strong induction that for all positive integers n,

$$u_n=rac{1}{\sqrt{5}}ig(lpha^n-eta^nig),$$
 where $lpha=rac{1+\sqrt{5}}{2}$ and $eta=rac{1-\sqrt{5}}{2}$

[12]

(b) Suppose that Canada Post prints only 3 cent and 5 cent stamps. Prove that it is possible to make up any postage of n cents using only 3 cent and 5 cent stamps for $n \geq 8$. [8]

QUESTION 5

- (a) Let $x = 0.a_1a_2a_3...$, where for n = 1, 2, 3, ..., the value of a_n is the number 0, or 1, or 2, or 3 which is the remainder on dividing n by 4. Is x rational? If so, express x as a fraction $\frac{m}{n}$ where m and n are integers with $n \neq 0$. [8]
- (b) Prove that between any two different irrational numbers there is a rational number and an irrational number. [12]

QUESTION 6

- (a) (i) Define an equivalence relation.
 - (ii) Show that the relation

$$\mathcal{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{3}\}$$

[2]

is an equivalence relation. What are the equivalence classes of \mathcal{R} ? [12]

- (b) (i) Define the composition $f \circ g$ of any two functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$.
 - (ii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by $f(x) = \sin x$ and $g(x) = x^2 + 2$ for all $x \in \mathbb{R}$. Determine $(f \circ g)(x)$ and $(g \circ f)(x)$. [4]

QUESTION 7

- (a) State and prove the Fundamental Theorem of Arithmetic. [12]
- (b) Prove that there are infinitely many primes of the form 3k + 2, where k is an integer. [8]

END OF EXAMINATION