UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2007

BSC./B.Ed./B.A.S.S. II

TITLE OF PAPER:

Linear Algebra

COURSE NUMBER:

M220

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Non-programmable calculators may be us

SPECIAL REQUIREMENTS:

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

- (a) Give the definition of each of the following
- (i) A vector space
- (ii) An orthogonal matrix
- (iii) A symmetric matrix
- (iv) A skew-symmetric matrix

[10 marks]

(b) Let V be all ordered pairs of real numbers. Define addition by (x_1, y_1) + $(x_2,y_2)=(x_1+x_2+1,y_1+y_2+1)$ and scalar multiplication by $\alpha(x_1,y_1)=$ $(\alpha^2 x_1, \alpha^2 y)$

Determine whether V is a vector space.

[10 marks]

Question 2

(a) Determine whether the following mappings are linear transformations

(i)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y-z \\ 2x+y \end{pmatrix}$
(ii) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+1 \\ y \end{pmatrix}$

(ii)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+1 \\ y \end{pmatrix}$

[10 marks]

(b) Prove that the set $B = \{x^2 + 1, x - 1, 2x + 2\}$ is a basis for the vector space $P_2(x)$, where $P_2(x)$ denotes all polynomials of degree ≤ 2 and the zero polynomial.

[10 marks]

Question 3

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be defined by $T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x+y+z\\x+2y+3z\end{array}\right)$

- (i) Find the standard matrix for the transformation T.
- (ii) Find the matrix relative to the R- bases

$$B = \{u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (0, 0, 1)\}$$

and

$$B^1 = \{v_1 = (1,2), v_2 = (1,3)\}$$

for \mathbb{R}^2 respectively

[5 marks]

(b) Verify the Cayley-Hamilton Theorem for the following matrix $\left(\begin{array}{ccc} 1 & 2 & 3 \end{array}\right)$

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & -1 & 5 \\
3 & 2 & 1
\end{pmatrix}$$

Question 4

(a) Find the eigen values and eigenvectors of

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{array}\right)$$

[10 marks]

(b) Let $S = \{u_1, u_2, u_3, u_4\}$ where

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad u_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \end{pmatrix} \qquad u_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix} \qquad u_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Show that the set S is a basis for \mathbb{R}^4

Question 5

(a) Solve the following systems

(i)

$$2x_1 + 2x_2 + 3x_3 = 3$$

$$4x_1 + 7x_2 + 7x_3 = 1$$

$$4x_2 - 2x_1 + 5x_3 = -7$$

(ii)

$$x_1 + 3x_2 - 2x_3 - 4x_4 = 3$$

$$2x_1 + 6x_2 - 7x_3 - 10x_4 = -2$$

$$-x_1 - x_2 + 5x_3 + 9x_4 = 14$$

[10 marks]

(b) (i) Show that the vector $v = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$ is a linear combination of $u_1 = (4,2,-3)^T$ $u_2 = (2,1,-2)^T$ and $u_3 = (-2,-1,0)^T$

[5 marks]

(ii) Show that $u_1 = (1, 1, 1, 1)^T$, $u_2 = (1, 0, 0, 2)^T$ and $u_3 = (0, 1, 0, 2)^T$ are linearly independent

[5 marks]

Question 6

(a) Determine whether the following has a non-trivial solution

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$2x_1 + x_2 - x_3 + 2x_4 = 0$$

$$3x_1 + 2x_2 + 2x_3 + 2x_4 = 0$$

[4 marks]

(b) Prove that if A and B are both nonsingular $n \times n$ matrices, then AB is also nonsingular and $(AB)^{-1} = B^{-1}A^{-1}$

[4 marks]

(c) Find the inverse A^{-1} of the following matrix A in two ways.

(i) using the augmented matrix [A|I]

[6 marks]

(ii) By computing a product $E_n E_{n-1} \cdots E_2 E_1$ elementary matrices [6 marks]

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$

Question 7

(a) Let $B^1=\{v_1,v_2,v_3\}$ and $B=\{u_1,u_2,u_3\}$ be ordered bases in \mathbb{R}^3 where

$$egin{aligned} v_1 &= \left(egin{array}{c} 0 \ 2 \ 1 \end{array}
ight) & v_2 &= \left(egin{array}{c} 1 \ 0 \ 2 \end{array}
ight) & v_3 &= \left(egin{array}{c} 1 \ -1 \ 0 \end{array}
ight) \ u_1 &= \left(egin{array}{c} 1 \ 0 \ 0 \end{array}
ight) & u_2 &= \left(egin{array}{c} 1 \ 1 \ 0 \end{array}
ight) & u_3 &= \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight) \end{aligned}$$

Find the transition matrix from B^1 to B

[10 marks]

(b) Prove that if a homogeneous system has more unknowns than the number of equations, then it always has a non-trivial solution.

[10 marks]

****** END OF EXAMINATION *******