UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2006/7

BSc. II

TITLE OF PAPER

MATHEMATICS FOR SCIENTISTS

COURSE NUMBER

: M 215

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

(a) If $\underline{a} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $\underline{b} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\underline{c} = (1, 2, -1)$. Verify that $\underline{b}(\underline{b} \cdot \underline{a}) + \underline{a}(\underline{c} \cdot \underline{b}) = -[(\underline{a} \times \underline{b}) \times \underline{c}]$

[6]

(b) Find an equation in rectangular coordinates of the surface whose equation in cylindrical coordinates is $r=4\cos\theta$

[4]

(c) Find the first 6 non-zero terms of the Taylor series of $f(x) = \sin x$ about x = 0. Use this series to approximate

 $\int_0^2 \sin x^2 dx$

to 4 decimal places. Also use the series to deduce the first 4 nonzero terms of $h(x) = \sin 2x$. [10]

Question 2

- (a) Prove that if f(x) is continuous on [a, b] and differentiable on (a, b) then there is a point $c \in (a, b)$ such that f'(c) = 0 if f(b) = f(a). [10]
- (b) Verify that for $f(x) = \sqrt{x-1}$ in [1,5] the Mean Value Theorem hypothesis is satisfied. [4]
- (c) Evaluate the limits

(i)
$$\lim_{x \to 0} x^3 \ln x$$
 [3]

(ii)
$$\lim_{x \to \pi} \frac{\ln \cos 2x}{(\pi - x)^2}$$
 [3]

Question 3

- (a) Locate all relative extrema and saddle points for $f(x,y) = 4xy x^4 y^4$ [9]
- (b) Let $z = xye^{\frac{x}{y}}$ with $x = r\cos\theta$, $y = r\sin\theta$. Find $\frac{dz}{d\theta}$ when $\theta = \frac{\pi}{6}$ and r = 2 [6]
- (c) Solve the differential equation

$$xydx + (x^2 + 1)dy = 0$$
[5]

Question 4

- (a) Use the method of Langrange Multipliers to find the extrema values of $f(x,y) = x^2 xy + y^2 3x$ subject to $x^2 + y^2 = 9$ [12]
- (b) If $f(x,y) = xe^{x^2y}$ find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(2, \ln 2)$ [8]

Question 5

(a) Find the general solution of the differential equation.

$$(x^3 + y^3)dx + xy^2dy = 0$$
 [10]

(b) Evaluate the area of the region bounded by $f(x) = \sin x \text{ and } f(x) = \cos x \text{ between } x = 0 \text{ and } x = \frac{\pi}{4}$ [6]

(c) If
$$f(x,y) = x^2y^2 + x^4y$$
, show that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. [4]

Question 6

- (a) Use polar coordinates to evaluate the double integral $\int \int_R (x^2 + y) dA$ where R is the region enclosed by $x^2 + y^2 = 1$ and $x^2 + y^2 = 5$ [10]
- (b) Solve the differential equation

$$y''' - y'' - 10y' - 8y = 0$$
[10]

Question 7

(a) Sketch and evaluate the area of the region represented by $\int \int_R dx dy$ in

$$R = \{y^2 \le x \le 4, \qquad 0 \le y \le z\}.$$

Find another iterated integral in the order dydx to show the same area. [10]

(b) Evaluate the triple integral

$$\int \int \int_{R} r \cos \theta dr d\theta dz$$

over

$$0 \le z \le 4, \quad 0 \le r \le 2, \quad 0 \le \theta \le \frac{\pi}{2}$$
 [6]

(c) Use the differentials to find the approximate value of $3\sqrt{64.08}$ to 4 decimal places. [4]