UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATIONS 2007

B.Sc/BEd/B.A.S.S II

TITLE OF PAPER

: CALCULUS I

COURSE NUMBER

M211

DURATION

THREE (3) HOURS.

INSTRUCTIONS

- 1. THIS PAPER CONSISTS OF **SEVEN** QUESTIONS
- 2. ANSWER **ANY FIVE** QUESTIONS.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- a) Show that for a parabola, $y = \alpha x^2 + \beta x + \phi$, α, β, ϕ being constants, $\alpha \neq 0$, there is only one critical value, c, and this value is equal to $\frac{-\beta}{2\alpha}$. (3)
- b) State and prove **THE MEAN VALUE** THEOREM. (7)
- c) Evaluate the following limits

i)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$
 (3)

ii)
$$\lim_{x \to 0} \left(1 + \sin \frac{3}{x} \right)^x \tag{7}$$

QUESTION 2

a) Sketch the graph of the following function:

$$f(x) = \frac{x}{x^2 + x - 2}$$

Indicate all intercepts, extrema, points of inflection and asymptotes where necessary. (10)

b) Use Newton-Raphson method to estimate the coordinate of intersection of the curves:

$$y_1 = x^3 \text{ and } y_2 = 4x$$

Take your $x_0 = 1.5000$, and stop after the **fourth iteration**. Keep every value that you use correct to 4 decimal places. (10)

- a) Use the *disk method* to show that the volume of a sphere of radius *a* is given by $\frac{4}{3}\pi a^3.$ (10)
- b) Show that the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3, is $\frac{64\pi\sqrt{2}}{15}$. A sensible sketch of the region referred to here is necessary. (10)

QUESTION 4

a) Show that the circumference of a circle of radius r, is $2\pi r$, if the circle is defined parametrically by

$$x = r \cos t \qquad \qquad y = r \sin t \qquad \qquad 0 \le t \le 2\pi \tag{10}$$

b) Show that the length of the curve: $f(x) = \frac{1}{2}(e^x + e^{-x})$ $0 \le x \le 2$, is approximately 3.63 units. (10)

a) Determine if the following sequence converges or diverges. Find the limit if the sequence Converges.

$$a_n = \left(\frac{n+3}{n+1}\right)^n \tag{10}$$

b) Consider the following sequence.

$$a_n = \sqrt{n^2 + 2n} - n$$

Check if the sequence is

- i) Monotonic, and deduce that it is convergent using an appropriate theorem. (4)
- ii) Bounded and prove that its least upper bound is 1. (6)

QUESTION 6

Discuss the convergence or divergence of each of the following series. State the name of the test used.

a)
$$\sum_{n=1}^{\infty} \frac{n+5}{n^3-2n+3}$$
 (5)

b)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n\sqrt{n}}$$
 (5)

c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n^2} \right)$$
 (5)

d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$$
 (5)

a) Show that the series

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

- i. Converges absolutely for |x| < 1,
- ii. Converges conditionally for x = -1, and
- iii. Diverges for x = 1 and for |x| > 1 (10)

b) Consider the following power series.

$$\sum_{n=0}^{\infty} \frac{(1+5^n)}{n!} x^n$$

Determine:

- i) The centre of convergence, (2)
- ii) The radius of convergence, (3)
- iii) The interval of convergence of the series. (5)

END OF SUPPLIMENTARY EXAMINATION