THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Final Examination 2006

M431 METRIC SPACES

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

M431 Final Exam 2006

Question 1. (a)[10 marks] What is meant by saying that (X, d) is a metric space? Let d be the function defined on \mathbb{R}^2 by

$$d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

where $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Prove carefully that (\mathbb{R}^2, d) is a metric space.

(b) [10 marks] Describe the uniform metric and the L_1 -metric on the set C[a, b] of continuous functions defined on the interval [a, b].

Let $x(t) = t^4$ and $y(t) = t^3$ for $-1 \le t \le 1$. Calculate the distance between x and y in C[-1,1]

- (i) in the uniform metric;
- (ii) in the L_1 -metric.
- Question 2. (a) [2 marks] Let (X, d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is convergent?

(b) [4+4 marks] Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 . Give reasons for your answers.

(i)
$$x_n = (n^{1/n}, \sin((n + \frac{1}{n})\pi))$$
 (ii) $x_n = (1 + \exp(-n), (-1)^n \cos(2n\pi))$

(c) [10 marks]. Explain what is meant by pointwise convergence of a sequence (x_n) in C[a, b]. Prove that if (x_n) converges to x in C[a, b] in the uniform metric then (x_n) converges to x pointwise.

Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} \frac{nt}{n-1} & \text{if } 0 \le t \le 1 - \frac{1}{n} \\ n(1-t) & \text{if } 1 - \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \begin{cases} t & \text{if } 0 \le t < 1 \\ 0 & \text{if } t = 1. \end{cases}$$

Deduce that (x_n) is not convergent in C[0,1] in the uniform metric.

CONT ...

Question 3. (a) [5 marks] Define what is meant by

- (i) a Cauchy sequence in a metric space,
- (ii) a complete metric space.

Show that the set (0,1) with the usual metric is incomplete.

(b) [6 marks] Let (X, d) be a metric space with the discrete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y. \end{cases}$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete.

(c) [9 marks] Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem.

Show that the mapping $f: [-1,1] \rightarrow [-1,1]$ defined by

$$f(x) = \frac{1}{12}(x^5 - 2x^3 + 8)$$

is a contraction, and deduce that there is a unique solution to the equation $x^5 - 2x^3 - 12x + 8 = 0$ in the interval [-1, 1].

Question 4. (a) [6 marks] Let (X, d) be a metric space and let $A \subseteq X$. What is meant by saying that A is closed? Show that if $(A_i)_{i \in I}$ is any collection of closed sets then the intersection $\bigcap_{i \in I} A_i$ is also closed.

(b) [8 marks] What is meant by the closed ball B[a,r] in a metric space? By drawing a diagram or otherwise describe the closed ball B[a,2] in \mathbb{R}^2 , where a=(1,1)

- (i) with the usual metric;
- (ii) with the max metric.

(c) [6 marks] Which of the following sets A is closed in the given metric space X

- (i) $X = \mathbb{R}^2$ (with the usual metric); $A = \{(a, b) : a + b \ge 0\}$
- (ii) X = C[0, 1] with the uniform metric; $A = \{x : x(0) < 2\}$
- (iii) $X = \mathbb{R}$ with the usual metric; $A = \{1, 2, 3, 4, \ldots\}$.

Give reasons for your answers.

CONT ...

Question 5. (a) [8 marks] Taking the definition that a set is open if its complement is closed, show that A is open if and only if for every $a \in A$ there is r > 0 such that the open ball $B(a,r) \subseteq A$.

By considering the point $a(t) \equiv 0$ in C[0,1] deduce that the set $A = \{x : x(\frac{1}{2}) = 0\}$ is not open in C[0,1] with the uniform metric.

- (b) [3 marks] Let X be a set and d_1 and d_2 be metrics on X. What is meant by saying that the metrics d_1 and d_2 are equivalent.
- (c) [5 marks] Suppose that there are positive constants k, K such that

$$kd_1(x,y) \le d_2(x,y) \le Kd_1(x,y)$$

for all $x, y \in X$. Show that d_1 and d_2 are equivalent.

- (d) [4 marks] Show that on \mathbb{R}^2 the usual (Euclidean) metric and the max metric are equivalent.
- Question 6. (a) [8 marks] Let $f: X \to Y$, where X and Y are metric spaces. Give the definition of f is continuous in terms of convergence of sequences.

Show that if f is continuous and U is a closed subset of Y then $f^{-1}(U)$ is a closed subset of X.

(b) [12 marks] Let f be the function $f: C[0,1] \to \mathbb{R}$ defined for $x \in C[0,1]$ by

$$f(x) = \min\{x(t) : 0 \le t \le 1\}$$

(i) Sketch the following functions $x_n(t)$ and find $f(x_n)$ for each n.

$$x_n(t) = \begin{cases} 1 - nt & \text{if} \quad 0 \le t \le \frac{1}{n} \\ nt - 1 & \text{if} \quad \frac{1}{n} \le t \le \frac{2}{n} \\ 1 & \text{if} \quad \frac{2}{n} \le t \le 1 \end{cases}$$

- (ii) Show that $x_n \to x$ in the L_1 metric on C[0,1] where x(t) = 1 for all t.
- (iii) Deduce that f is not continuous with respect to the L_1 metric on C[0,1] (and the usual metric on \mathbb{R}).
- Question 7. (a) [4 marks] Let X be a metric space and $A \subseteq X$. What is meant by saying that (i) A is bounded and (ii) A is compact?
 - (b) [6 marks] Show that a compact set is complete and bounded.
 - (c) [4 marks] Show that if X is a metric space with the discrete metric then any infinite set $A \subseteq X$ is bounded but not compact.
 - (d) [6 marks] Which of the following sets is compact?
 - (i) $\{(x,y): 0 \le x \le y \le 1\}$ in \mathbb{R}^2
 - (ii) $\mathbb{Q} \cap [0,1]$ in \mathbb{R} .

Give reasons for your answers.

(END)