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Question 1. (a){10 marks] What is meant by saying that (X, d) is a metric space?
‘Let d be the function defined on R? by ‘

d(.’B, y) = ma'x{lxl - y1|7 |$2 - y2i}

where z = (11,72) and y = (y1,%2). Prove carefully that (R?,d) is a metric
space.

(b) [10 marks] Describe the uniform metric and the L,-metric on the set Cla, b]
of continuous functions defined on the interval [a, b].
Let z(t) = t* and y(t) = 3 for —1 <t < 1. Calculate the distance between
-and y in C[-1,1]
(i) in the uniform metric;

(ii) in the L,-metric.

Question 2. (a) [ 2 marks] Let (X,d) be a metric space and (z,) be a sequence in X.
What is meant by saying that (z,) is convergent?

(b)[ 4+4 marks] Decide whether or not the following sequences are convergent
in the usual (Euclidean) metric on R%. Give reasons for your answers.

() z, = (n¥/,sin ((n + 1) 7)) (ii) z, = (1 + exp(—n), (—1)" cos(2n))
(c) [ 10 marks] . Explain what is meant by pointwise convergence of a sequence

(zn) in Cla,b]. Prove that if (z,) converges to z in Cfa,b] in the uniform
metric then (z,) converges to z pointwise.

Let z, in C|[0,1] be defined by

1
" o<t<1—-

To(t) = n—1 1 n
n(l —t) if 1—;§t§1.

Sketch the graph of z,(t) and show that (z,) converges pointwise to the

function
o=t ifost<1
=0 i t=1.

Deduce that (z,) is not convergent in C[0,1] in the uniform metric.

CONT ...
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Question 3.

Question 4.

(a) [ 5 marks] Define what is meant by
(i) a Cauchy sequence in a metric space,
(ii) a complete metric space.
Show that the set (0,1) with the usual metric is incomplete.
(b) [ 6 marks] Let (X, d) be a metric space with the discrete metric

_JOoif z=y
d(:z:,y)—{l if z#y.

Show that any Cauchy sequence in X is eventually constant, and deduce that
(X, d) is complete. ‘

(¢) |9 marks] Explain what is meant by a contraction of a metric space, and
state without proof the Contraction Mapping Theorem.

Show that the mapping f:[-1,1] — [-1,1] defined by

flz) = 1—12-(z5 — 213 4 8)

is a contraction, and deduce that there is a unique solution to the equation
z® — 223 — 122 + 8 = 0 in the interval [-1,1].

(a) [6 marks] Let (X, d) be a metric space and let A C X. What is meant by
saying that A is closed? Show that if (A;):cs is any collection of closed sets
then the intersection ()¢, A; is also closed.

(b)[ 8 marks] What is meant by the closed ball Bla,r] in a metric space? By
drawing a diagram or otherwise describe the closed ball Bla,2] in R2?, where
a=(1,1)

(i) with the usual metric;
(ii) with the max metric.

(c) [6 marks] Which of the following sets A is closed in the given metric space
X.

(i) X = R? (with the usual metric); A = {(a,b) : a + b > 0}
(ii) X = C[0,1] with the uniform metric; A = {z : £(0) < 2}
(iii) X = R with the usual metric; A = {1,2,3,4,...}.

Give reasons for your answers.

CONT ...
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Question 5.

(a) [8 marks) Taking the definition that a set is open if its complement is

‘closed, show that A is open if and only if for every a € A there is r > 0 such

that the open ball B(a,r) C A.
By considering the point a(t) = 0 in C[0,1] deduce that the set A = {z :
z(3) = 0} is not open in C[0, 1] with the uniform metric.

(b) [8 marks] Let X be a set and d; and d, be metrics on X. What is meant
by saying that the metrics d; and ds are equivalent.

~ (c) {56 marks] Suppose that there are positive constants k, K such that

Question 6.

Question 7.

kdi(z,y) < da(z,y) < Kdi(z,7)
for all z,y € X. Show that d; and d; are equivalent.
(d) [4 marks] Show that on R? the usual (Euclidean) metric and the max
metric are equivalent.

(a) [8 marks] Let f : X — Y, where X and Y are metric spaces. Give the
definition of f is continuous in terms of convergence of sequences.

Show that if f is continuous and U is a closed subset of Y then f~}(U) is a
closed subset of X.

(b) [12 marks) Let f be the function f : C[0,1] — R defined for z € C[0, 1]
by

f(z) =min{z(t): 0<t < 1}
(i) Sketch the following functions z,(t) and find f(z,) for each n.

( ) 1
1—nt if OStS-T;
xn(t)=j nt—1 if —I—Sts%
n
2
1 if —<t<1
\ n

(ii) Show that z, — z in the L; metric on C[0, 1] where z(t) = 1 for all .
(iii) Deduce that f is not continuous with respect to the L; metric on C[0, 1]
(and the usual metric on R).

(a) [4 marks] Let X be a metric space and A C X. What is meant by saying
that (i) A is bounded and (ii) A is compact?

(b) [6 marks] Show that a compact set is complete and bounded.

(c) [4 marks] Show that if X is a metric space with the discrete metric then
any infinite set A C X is bounded but not compact.

(d) [6 marks] Which of the following sets is compact ?
(i) {(z,y):0<z <y <1} inR?
(i) QN[0,1] in R.
Give reasons for your answers.
(END)
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