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Question 1.

Question 2.

Question 3.

Question 4.

(a)[7 marks] Find the highest common factor of 13452 and 3127 and express

-it in the form 13452s + 3127t where s, t are integers.

(b)[6 marks] Show that for any integers a, b
(3a — b,2a — b) = (a,b).

(¢) [7 marks] What is meant by saying that a polynomial f(z) € Z[z] is
irreducible? State Eisenstein’s test for irreducibility, and use it to show that
21 + 49z + 3522 — 4223 — 14z* — 171° is irreducible in Q[z].

[ 6§ + 5§ + 5 +5 marks] Which of the gzllowing is a ring (with the usual
operations)? In each case either prove that it is a ring or explain why it is
not.

(i) the set of 2 x 2 matrices of the form ( ‘Z 2111 ) where a,b,c,d are

integers;
(i) the set of rational numbers of the form % where a, b are integers
(with b # 0);
(iii) the set of all polynomials in Q[z] of degree at least 3;
(iv) the set Z[v=T7] = {a + by/—=7 : a,b € Z}.
(You may assume that C and Ma(R), the set of all 2 x 2 matrices are both
rings.)

(a) [6 marks] What is (i) an integral domain; (ii) a field ? Show that a field
is an integral domain. Give an example of an integral domain that is not a
field.

(b) [ 14 marks] Which of the following is a field?

() {a+bV/19:a,b € Q};

. a

(ii) {-é; :a,beZ};

(iii) Zyy;

(IV) Zu.
In each case either prove that the set is a field or explain why it is not. (You
may assume that R is a field and that Z,, is a ring for any n.)
(a) [6 marks] Show that if D is a field then the ring D[z] of polynomials in z
with coefficients in D is an integral domain but not a field.

(b) [7 marks] The polynomial z* +23+2z2+z+1 has a linear factor in Zj[z].
Find its factorization into irreducible polynomials in Zs[z].

(c) [6 marks] Show that @ = /2 — /5 is algebraic over Q. Find the
minimum polynomial and the degree of a (i) over R; (ii) over Q.

CONT ...
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Question 5.

Question 6.

Question 7.

(a)[2 marks] Define each of the following for u,r in a ring with unity.

(i) v is a unit;

(ii) r is irreducible.
(b) [6 marks] Describe all the units in the following rings:

(1) R; (i) Z2

(c)[8 marks] Define the norm N(a) of an element a € Z[i] and state without
proof its main properties.
(d) (i) [8 marks] Show that +1 and +i are the only units in Z][i].

(i) {8 marks] Show that 7 and 1+ 2¢ are irreducible in Z[i].

(iii) [8 marks] Show that 5 is reducible in Z[i] and find its factorization
into irreducibles.
(2) [7 marks] Let R and S be rings. What is meant by (i) an ideal of R
(ii) a ring homomorphism 6 : R — S.

Define the kernel ker@ of a ring homomorphism 6 : R — S and show
that it is an ideal of R.

(b) [7 marks] Which, if any, of the following is a ring homomorphism? Find
the kernel for those that are homomorphisms.

1 if n isodd |
0 if n iseven'’

(ii) 6 : Mx(R) — R defined by 6(A) = det A.

(c) .[6 marks] Let ¢ : Z[z] — Z be the homomorphism defined by ¢(f) =
f(—2). Show that kerp = {f € Z[z] : f is divisible by z + 2}.

(1) 6:Z — Zy defined by 6(n) = {

(a) (i) [8 marks] Show that the polynomial z2 + 2z + 2 is irreducible in Z3|z].
(b) Suppose that E is an extension field of Z; and o € E is a root of z2+2z+2.
(i) [2 marks] What is meant by the field Z3(a)?

(ii) [2 marks] What is meant by the minimum polynomsial of o over Z;?
Explain why this is 22 + 2z + 2.

(iii) [6 marks] Show that every element of Z3(a) can be written uniquely
as a + ba with a,b € Z3.

(iv) [7 marks] Draw up the multiplication table for Z3(a) and identify the
multiplicative inverse of each non-zero element.

(Any theorems you use about divisibility and HCF's in Z3[z] should be stated
clearly but not proved.)

(END)
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