THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Final Examination 2006

M423 ABSTRACT ALGEBRA II

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

M423 Final Exam 2006

- **Question 1.** (a)[7 marks] Find the highest common factor of 36630 and 539 and express it in the form 36630s + 539t where s, t are integers.
 - (b)[6 marks] Show that for any integers a, b

$$(a+b, a+2b) = (a, b).$$

- (c) [7 marks] What is meant by saying that a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible? State Eisenstein's test for irreducibility, and use it to show that $26x^5 5x^4 + 25x^2 10$ is irreducible in $\mathbb{Q}[x]$.
- Question 2. [5 + 5 + 5 + 5 marks] Which of the following is a ring (with the usual operations)? In each case either prove that it is a ring or explain why it is not.
 - (i) the set of 2×2 matrices of the form

$$\begin{pmatrix} a & 5b \\ c & d \end{pmatrix}$$

where a, b, c, d are integers;

- (ii) the set of rational numbers of the form $\frac{a}{3^b}$ where a, b are integers and $b \ge 0$;
- (iii) the set $\{1, -1, i, -i\}$;
- (iv) the set $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbb{Z}\}.$

(You may assume that \mathbb{C} and $M_2(\mathbb{R})$, the set of all 2×2 matrices are both rings.)

- Question 3. (a) [6 marks] What is (i) an integral domain; (ii) a field? Give an example of an integral domain that is not a field.
 - (b) [6 marks] Show that a finite integral domain is a field.
 - (c) [8 marks] Explain what is meant by the ring \mathbb{Z}_n where n > 1 is an integer. Show that \mathbb{Z}_n is a field if and only if n is prime.
- Question 4. (a) [7 marks] Show that if D is an integral domain then the ring D[x] of polynomials in x with coefficients in D is an integral domain but not a field.
 - (b) [7 marks] The polynomial $x^4 + 2x^3 + x^2 + x + 1$ has a linear factor in $\mathbb{Z}_3[x]$. Find its factorization into irreducible polynomials in $\mathbb{Z}_3[x]$.
 - (c) [6 marks] Show that $\alpha = \sqrt{1 \sqrt{2}}$ is algebraic over \mathbb{Q} . Find the minimum polynomial and the degree of α (i) over \mathbb{R} ; (ii) over \mathbb{Q} .

CONT ...

- Question 5. (a) [3 marks] Define each of the following for u, r in a ring with unity.
 - (i) u is a unit;
 - (ii) r is prime;
 - (iii) r is irreducible.
 - (b) [3 marks] Show that in any integral domain a prime is irreducible.
 - (c) [3 marks] Let d be a square free integer; define the norm $N(\alpha)$ of an element $\alpha \in \mathbb{Z}[\sqrt{d}]$ and state without proof its main properties.
 - (d) (i) [4 marks] Show that ± 1 are the only units in $\mathbb{Z}[\sqrt{-5}]$.
 - (ii) [4 marks] Show that $(2 + \sqrt{-5})$ is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
 - (iii) [3 marks] By considering the product $(2+\sqrt{-5})(2-\sqrt{-5})$ show that $(2+\sqrt{-5})$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.
- Question 6. (a) [7 marks] Let R and S be rings. What is meant by (i) an ideal of R;
 - (ii) a ring homomorphism $\theta: R \to S$?

Define the kernel $\ker\theta$ of a ring homomorphism $\theta:R\to S$ and show that it is an ideal of R.

- (b) [7 marks] Which, if any, of the following is a ring homomorphism? Find the kernel for those that are homomorphisms.
 - (i) $\theta: \mathbb{Z} \to \mathbb{Z}$ defined by $\theta(z) = 3z$;
 - (ii) $\theta: R \to \mathbb{C}$ defined by $\theta \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a + ib$ where R is the ring of matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ (You need not prove that R is a ring.)
- (c) [6 marks] Let $\varphi : \mathbb{Q}[x] \to \mathbb{Q}$ be the homomorphism defined by $\varphi(f) = f(1)$. Show that $\ker \varphi = \{f \in \mathbb{Q}[x] : f \text{ is divisible by } x 1\}$.
- Question 7. (a) [3 marks] Show that the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.
 - (b) Suppose that E is an extension field of \mathbb{Z}_2 and $\alpha \in E$ is a root of $x^2 + x + 1$.
 - (i) [2 marks] What is meant by the field $\mathbb{Z}_2(\alpha)$?
 - (ii) [2 marks] What is meant by the minimum polynomial of α over \mathbb{Z}_2 ? Explain why this is $x^2 + x + 1$.
 - (iii) [6 marks] Show that every element of $\mathbb{Z}_2(\alpha)$ can be written uniquely as $a + b\alpha$ with $a, b \in \mathbb{Z}_2$.
 - (iv) [7 marks] Draw up the multiplication table for $\mathbb{Z}_2(\alpha)$ and identify the multiplicative inverse of each non-zero element.

(Any theorems you use about divisibility and HCFs in $\mathbb{Z}_2[x]$ should be stated clearly but not proved.)

(END)