THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Supplementary Examination 2006

M331 REAL ANALYSIS

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

M331 Supplementary Exam 2006

Throughout this paper the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ stand for the natural numbers, the integers, the rational numbers and the real numbers respectively.

- Question 1. Let A be a subset of the real numbers.
 - (a) [10 marks] What is meant by saying that A is bounded below?Which of the following sets is bounded below? Give reasons for your answers.
 - (i) $\{q^3: q \in \mathbb{Q} \text{ and } q < 2\}$

(ii)
$$\left\{ \frac{3n^2+2}{n^2-2} : n \in \mathbb{N} \right\}$$

- (iii) $\{2^n : n \in \mathbb{Z}\}$
- (b) [6 marks] What is meant by $\inf A$ for a set A that is bounded below? Find $\inf A$ for each set in (a) that is bounded below.
- (c) [4 marks] Which of the following statements is always true? Give a proof for those that are true and a counterexample for those that are false.
- (i) if A is bounded below then $\mathbb{R} \setminus A$ is not bounded below (where $\mathbb{R} \setminus A = \{x \in \mathbb{R} : x \notin A\}$);
- (ii) if A is bounded below then the set $-A = \{-x : x \in A\}$ is not bounded below.
- Question 2. (a) [8 marks] Let (a_n) be a sequence of real numbers and $l \in \mathbb{R}$. Give a precise definition of the statement that

$$\lim_{n\to\infty}a_n=l$$

Show directly from the definition that

$$\lim_{n\to\infty}\frac{(\sqrt{n}+1)^2}{n+1}=1.$$

(b) [12 marks] Which of the following sequences (a_n) is convergent? For those that are, find the limit. State clearly any facts about limits that you use.

(i)
$$a_n = \frac{5n^4 - n + 2}{13n^2 - n^3}$$

(ii)
$$a_n = \frac{n + 2n^2 - 4n^3}{2n^3 - 9n}$$

(iii)
$$a_n = \sqrt{n^2 - \frac{2}{n^2}}$$

(iv)
$$a_n = \sqrt{n^2 + 1} - n$$

CONT ...

- Question 3. (a) [4 marks] Let (a_n) be a sequence. (i) Define what is meant by the partial sums of the series $\sum a_n$ (ii) What is meant by saying that $\sum_{n=1}^{\infty} a_n = s$
 - (b) [6 marks] Prove carefully that if $\sum_{n=1}^{\infty} a_n = s$ and $\sum_{n=1}^{\infty} b_n = t$ then $\sum_{n=1}^{\infty} (a_n + b_n) = s + t$.
 - (c) [6 marks] Show that each of the following series converges, stating any general theorems that you use.

(i)
$$\sum (-1)^n \frac{1}{\sqrt{n}}$$

(ii) $\sum \frac{25^n}{n^n}$

(ii)
$$\sum \frac{25^n}{n^n}$$

- (d) [4 marks] Show that if $\sum a_n$ and $\sum b_n$ are both convergent and $a_n \geq 0$ and $b_n \geq 0$ then $\sum a_n b_n$ is convergent.
- Question 4. (a) [6 marks] Find $\lim_{x\to c} f(x)$ for each of the following functions and the given value of c.

(i)
$$f(x) = \begin{cases} \frac{x^4 - 25}{x^2 - 5} & \text{if } x^2 \neq 5 \\ 12 & \text{if } x^2 = 5 \end{cases}$$
; $c = \sqrt{5}$

(i)
$$f(x) = \begin{cases} \frac{x^4 - 25}{x^2 - 5} & \text{if } x^2 \neq 5 \\ 12 & \text{if } x^2 = 5 \end{cases}$$
; $c = \sqrt{5}$
(ii) $f(x) = \begin{cases} (x^2 - 4)\sin\left(\frac{1}{x - 2}\right) & \text{if } x \neq 2 \\ -4 & \text{if } x = 2 \end{cases}$; $c = 2$

(b) [7 marks] What is meant by saying that a function f(x) is continuous at a point c. (You may assume that f is defined on an interval (a, b) that contains c.)

Prove that if f(x) and g(x) are both continuous at c then so is the sum f(x)+g(x).

(c) [7 marks] Which of the following functions is continuous at 0

(i)
$$f(x) = \begin{cases} x \cos(1/x^2) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

(ii) $f(x) = [\sin x]$ (where [z] is the integer part of z - that is, the greatest integer $\leq z$).

(Give reasons for your answers.)

CONT ...

Question 5. Let $f : [a, b] \to \mathbb{R}$ and let a < c < b.

- (a) [8 marks] Define what is meant by saying that f is differentiable at the point c. Show carefully that if f and g are differentiable at c then f+g is differentiable at c.
- (b) [6 marks] Prove that if f is differentiable at c and c is a local maximum or local minimum of f, then Df(c) = 0. Give an example to show that the converse is false.
- (c) [6 marks] State the Mean Value Theorem. Apply it to the function $f(x) = e^x \sin x$ to show that if x < y then

$$|e^y \sin y - e^x \sin x| \le \sqrt{2} e^y (y - x)$$

where $e = \exp 1$.

[You may use without proof the fact that $(\sin x + \cos x)^2 = 1 + \sin 2x$].

- Question 6. (a) [10 marks] Let $f:[a,b] \to \mathbb{R}$ be continuous. Explain how the Riemann integral $\int_a^b f(x)dx$ is defined using upper and lower sums.
 - (b) [10 marks] From the definition of the Riemann integral show that

$$\int_0^1 x dx = \frac{1}{2}$$

(You may assume without proof that $1+2+3+\ldots+m=\frac{1}{2}m(m+1)$ for any $m\in\mathbb{N}$)

Question 7. (a) [12 marks] Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $F:[a,b]\to\mathbb{R}$ is differentiable with DF(x)=f(x) for $a\leq x\leq b$. Show that

$$\int_{a}^{x} f(t)dt = F(x) - F(a)$$

for each $x \in [a, b]$. (State carefully anything you assume about the differentiability of the function $G(x) = \int_a^x f(t)dt$; and state carefully any other properties of derivatives or integrals that you assume.)

(b) [8 marks] Let $g(x) = \int_0^{x^3} \exp(1 + 2\sin t) dt$. Show that g is differentiable for all x and find its derivative. (State clearly any theorems that you use.)

(END)