THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Final Examination 2006

M331 REAL ANALYSIS

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

M331 Final Exam 2006

Throughout this paper the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ stand for the natural numbers, the integers, the rational numbers and the real numbers respectively.

- Question 1. Let A be a subset of the real numbers.
 - (a) [10 marks] What is meant by saying that A is bounded above? What is meant by the supremum of A (if it exists)?

State the *Completeness Property* of $\mathbb R$ in terms of the existence of suprema. Use it to derive the *Archimedean Property* of $\mathbb R$:

for any $x \in \mathbb{R}$ there is a natural number $n \in \mathbb{N}$ with n > x.

- (b) [6 marks] Which of the following sets is bounded above? For those that are find the supremum. Give reasons for your answers.
 - (i) $\{\frac{1}{n^2+1}-n^2:n\in\mathbb{Z}\}$
 - (ii) $\left\{q^2 \frac{1}{q^2 + 1} : q \in \mathbb{Q}\right\}$
- (c) [4 marks] Which of the following statements is always true? Give a proof for those that are true and a counterexample for those that are false.
 - (i) if A is not bounded above then $\mathbb{R} \setminus A$ is bounded above;
 - (ii) if A is bounded above then $\mathbb{R} \setminus A$ is not bounded above.
- Question 2. (a) [7 marks] Let (a_n) be a sequence of real numbers. Give a precise definition of the statement that (a_n) is convergent.

Show directly from the definition that the sequence

$$\frac{n+1}{(\sqrt{n}+1)^2}$$

converges to 1.

- (b) [4 marks] Prove carefully that a convergent sequence is bounded.
- (c) [9 marks] Which of the following sequences (a_n) is convergent? For those that are, find the limit. State clearly any facts about limits that you use.

(i)
$$a_n = \frac{3n^3 - n^2 + 2}{n - 17n^2}$$

(ii)
$$a_n = \frac{n - n^2 + 2n^3}{5n^4 - 17n} \cdot \sin(n^2)$$

(iii)
$$a_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}$$

CONT ...

- **Question 3.** (a) [4 marks] Let (a_n) be a sequence. (i) Define what is meant by the partial sums of the series $\sum a_n$ (ii) What is meant by saying that $\sum a_n$ is convergent and that $\sum_{n=1}^{\infty} a_n = s$.
 - (b) [3 marks] Show that if $\sum |a_n|$ is convergent then $\sum a_n$ is also convergent.
 - (c) [6 marks] Show that the series $\sum \frac{1}{n}$ is divergent.
 - (d) [4 marks] Show that the series $\sum (-1)^n \frac{1}{n}$ is convergent, and deduce that the converse of (b) is false.
 - (e) [3 marks] Show that the series $\sum \frac{2^n}{n^n}$ is convergent

(For parts (d) and (e) state any general theorems that you use.)

Question 4. (a) [6 marks] Find $\lim_{x\to c} f(x)$ for each of the following functions and the given value of c.

(i)
$$f(x) = \begin{cases} \frac{x^2 - 9}{x^3 - 27} & \text{if } x \neq 3 \\ 18 & \text{if } x = 3 \end{cases}$$
; $c = 3$

(Hint: $a^3 - b^3 = (a - b)(a^2 + ab + b^3)$

int:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^3)$$
)
$$(ii) f(x) = \begin{cases} (x^2 - 2)\cos^2\left(\frac{1}{x - \sqrt{2}}\right) & \text{if } x \neq \sqrt{2} \\ -1 & \text{if } x = \sqrt{2} \end{cases}$$
; $c = \sqrt{2}$

(b) [8 marks] What is meant by saying that a function f(x) is continuous at a point c. (You may assume that f is defined on an interval (a, b) that contains c.)

Show that if f(x) and g(x) are both continuous at c then so is the product $f(x)\cdot g(x)$.

(c) [6 marks] Which of the following functions is continuous at 0:

(i)
$$f(x) = \begin{cases} |x^3|/x^3 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
(ii) $f(x) = \begin{cases} |x^3|/x^2 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

(Give reasons for your answers.

CONT ...

Question 5. Let $f : [a, b] \to \mathbb{R}$ and let a < c < b.

- (a) [8 marks] Define what is meant by saying that f is differentiable at the point c. Show carefully that if f and g are differentiable at c then the product $f \cdot g$ is differentiable at c. (You may assume without proof that if f is differentiable at c then f is continuous at c.)
- (b) [6 marks] Prove that if f is differentiable at c and c is a local maximum or local minimum of f, then Df(c) = 0. Give an example to show that the converse is false.
- (c) [6 marks] State the Mean Value Theorem and use it to show that

$$y^4 \exp y - x^4 \exp x > 5e(y - x)$$

if $1 \le x < y$, where $e = \exp 1$

Question 6. (a) [10 marks] Let $f:[a,b] \to \mathbb{R}$ be continuous.

- (i) Explain what is meant by a partition P of the interval [a,b] and what is meant by the *upper and lower sums* U(f;P) and L(f;P) for P.
- (ii) Explain how the Riemann integral $\int_a^b f(x)dx$ is defined using upper and lower sums.
- (b) [10 marks] From the definition of the Riemann integral show that

$$\int_0^2 x dx = 2$$

(You may assume without proof that $1+2+3+\ldots+m=\frac{1}{2}m(m+1)$ for any $m\in\mathbb{N}$)

Question 7. (a) [12 marks] Suppose that $f:[a,b] \to \mathbb{R}$ is continuous and $F(x) = \int_a^x f(t)dt + c$ for $a \le x \le b$. Show that F(x) is differentiable in the interval [a,b] with derivative DF(x) = f(x).

(State carefully any properties of the integral that you assume.)

(b) [8 marks] Let $g(x) = \int_0^{x^3} \ln \left(1 + \frac{1}{2} \cos(t^2)\right) dt$. Show that g is differentiable for all x and find its derivative.

(END)