UNIVERSITY OF SWAZILAND

Final Examination 2006

Title of Paper

Abstract Algebra I

Program

BSc./B.Ed./B.A.S.S. III

Course Number :

M 323

Time Allowed

: Three (3) Hours

Instructions

- This paper consists of seven (7) questions on THREE (3) pages.
 Answer any five (5) questions.
 Non-programmable calculators may be used.

Special Requirements: None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

- (a) Find all the subgroups of \mathbb{Z}_{18} and draw the lattice diagram. [10 marks]
- (b) Let G and H be groups, $\varphi: G \to H$ be an isomorphism of G and H and let e be the identity element of G. Prove that $(e)\varphi$ is the identity in H and that $[(a)\varphi]^{-1}=(a^{-1})\varphi$ for all $a\in G$. [10 marks]

Question 2

- (a) Prove that a non-abelian group of order 2p, p prime contains at least one element of order p. [6 marks]
- (b) Consider the following permutations in S_6

Compute

- (i) $\rho\sigma$ (ii) ρ^2 (iii) ρ^{-1} (iv) ρ^{-2} (v) $\sigma\rho^2$ [10 marks]
- (c) Write the permutations in (b) as products of disjoints cycles in S_6 .

 [4 marks]

Question 3

(a) (i) State Cayle's theorem.

[4 marks]

(ii) Let (\mathbb{R}^+,\cdot) be the multiplicative group of all positive real numbers and $(\mathbb{R},+)$ be the additive group of real numbers. Show that (\mathbb{R}^+,\cdot) is isomorphic to $(\mathbb{R},+)$.

[6 marks]

- (b) (i) Find the number of generators in each of the following cyclic groups \mathbb{Z}_{30} and \mathbb{Z}_{42} . [5 marks]
 - (ii) Determine the right cosets of $H = \langle 4 \rangle$ in \mathbb{Z}_8 . [5 marks]

Question 4

(a) Show that \mathbb{Z}_p has no proper subgroup if p is prime.

[6 marks]

- (b) Show that if (a, m) = 1 and (b, m) = 1 then (ab, m) = 1, $a, b, m \in \mathbb{Z}$.

 [6 marks]
- (c) Prove that every group of prime order is cyclic.

[8 marks]

Question 5

(a) (i) Define the notion of a "normal subgroup" of a group.

[4 marks]

- (ii) Verify that $H = \{(1), (123), (132)\}$ is a normal subgroup of S_3 .

 [6 marks]
- (b) Prove that every subgroup of a cyclic group is cyclic.

[10 marks]

Question 6

(a) Show that (\mathbb{Z}_7^0, \cdot) is cyclic and give all generators of the group.

[5 marks]

(b) Prove that, if the order of a group G is p^2 , where p is prime, then every proper subgroup of G is cyclic.

[5 marks]

- (c) (i) Express d = (2190, 465) as an integral linear combination of 219 and 465. [5 marks]
 - (ii) Solve the following

$$3x \equiv 5 \pmod{11}$$

[5 marks]

Question 7

- (a) For each binary operation * defined on a set G, say whether or not * gives a group structure on the set.
 - (i) Define * on $G = \mathbb{Q}^+$ by

$$a*b = \frac{ab}{2} \quad \forall \quad a, \ b \in G = Q^+.$$

[5 marks]

(ii) Define * on $G = \mathbb{R}$ by

$$a*b=ab+a+b \quad \forall \ a,b\in G=\mathbb{R}.$$

[5 marks]

(b) Show that \mathbb{Z}_6 and S_3 are NOT isomorphic and that \mathbb{Z} and $n\mathbb{Z}$ are isomorphic. [10 marks]

****** END OF EXAMINATION *******