THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Final Examination 2006

M313

COMPLEX ANALYSIS

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

M313 Final Exam 2006

Throughout this paper the symbols \mathbb{R}, \mathbb{C} stand for the real numbers and the complex numbers respectively.

- Question 1. (a) [7 marks] Find all solutions to the equation $z^4 = -4$, expressing them in both rectangular and polar forms. Indicate their position in the complex plane.
 - (b) [6 marks] State de Moivre's Theorem and use it to prove the identity

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2\theta$$

(c) [7 marks] Describe the set of values of z for which $|z - \frac{3}{2}i| = \frac{3}{2}$ and show that it is the same as the set of values of z for which

$$\frac{|z-i|}{|z+3i|} = \frac{1}{3}$$

- Question 2. (a) [4 marks] Let f(z) be a complex function. What is meant by saying that f is differentiable at a point $z_0 \in \mathbb{C}$? What is meant by saying that f is analytic in an open set $S \subseteq \mathbb{C}$?
 - (b) [4 marks] Show that the function $f(z) = |z|^2$ is differentiable at $z_0 = 0$.
 - (c) [4 marks] State the Cauchy-Riemann equations for a complex function f(z) = u(x, y) + iv(x, y) that is (complex) differentiable at a point $z_0 \in \mathbb{C}$.
 - (d) [4 marks] Find u(x, y) and v(x, y) for the function $f(z) = |z|^2$ and deduce that this function is **not** differentiable at any point $z_0 \neq 0$.
 - (e) [4 marks] Let u(x,y) = x(1+2y). Find a function v(x,y) such that the complex function f(z) = u(x,y) + iv(x,y) is analytic.
- Question 3. (a) [6 marks] Give the definition of the complex exponential function $\exp(z) = e^z$ (where z = x + iy) and show that it obeys the property

$$e^{z_1}e^{z_2}=e^{z_1+z_2}$$

(You may assume the basic properties of the real exponential function $\exp x = e^x$ for $x \in \mathbb{R}$; any other results you use should be stated clearly)

Show that $e^{\overline{z}} = \overline{e^z}$ for all z.

- (b) [6 marks] (i) Explain the meaning of the complex logarithmic function $\log z$. Show that $\exp(\log z) = z$ for every value of $\log z$.
- (ii) What is meant by the principal value Log z for $z \in \mathbb{C}$? Show by an example that it is not always true that $\text{Log}(e^z) = z$.
- (c) [8 marks] Show that
 - (i) $\log i = (2n + \frac{1}{2})\pi i$ $(n = 0, \pm 1, \pm 2, ...)$
 - (ii) $\log(-1+\sqrt{3}i) = \ln 2 + 2(n+\frac{1}{3})\pi i$ $(n=0,\pm 1,\pm 2,...)$

CONT ...

- Question 4. (a) [4 marks] State without proof the Cauchy-Goursat Theorem and Cauchy's integral formula for an analytic function and its derivatives. [Ensure that you state clearly the conditions needed to make your statements true.]
 - (b) [16 marks] Use the above to evaluate the following:
 - (i) $\int_C \frac{z^2 \cos \pi z}{z+3} dz$ where C is the circle |z|=2 traversed anticlockwise.
 - (ii) $\int_C \frac{z^2 \cos \pi z}{z+3} dz$ where C is the circle |z|=4 traversed anticlockwise.
 - (iii) $\int_C \frac{z^2 \cos \pi z}{(z+3)^2} dz$ where C is the circle |z|=4 traversed anticlockwise.
 - (iv) $\int_C \frac{z^2}{z^2+3} dz$ where C is the circle |z-i|=2 traversed anticlockwise.
- Question 5. (a) [10 marks] State without proof Liouville's Theorem. Use it to prove the Fundamental Theorem of Algebra: any non-constant polynomial p(z) (i.e. $p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n$ with $n \ge 1$ and $a_n \ne 0$) has at least one zero (i.e. there is at least one point $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$).
 - (b) [10 marks] (i) State Taylor's Theorem for a complex function f(z). Show that the function $f(z) = \frac{1}{z}$ is analytic in the disc |z-1| < 1 and find its Taylor series about the point $z_0 = 1$.
 - (ii) For z with |z-1| > 1 let $w = \frac{z}{z-1}$. Show that $w-1 = \frac{1}{z-1}$ so that |w-1| < 1. Show further that $\frac{1}{z} = \frac{1}{z-1} \cdot \frac{1}{w}$ and use the result of (i) to show that the function $f(z) = \frac{1}{z}$ has Laurent series

$$\frac{1}{z} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(z-1)^n}$$

valid in the region $D = \{z : |z-1| > 1\}.$

- Question 6. (a) [10 marks] Let f(z) be a complex function and $z_0 \in \mathbb{C}$. What is meant by saying that (i) z_0 is a singular point (or singularity) of f (ii) z_0 is an isolated singularity of f (iii) z_0 is a pole of order m (where $m \ge 1$).
 - (b) [10 marks] Describe all the poles, and find the corresponding residues, of the following functions:

(i)
$$f(z) = \frac{e^z}{z^2 + 16}$$
 (ii) $f(z) = \frac{z^3 + z}{(z+i)^3}$

(Any theorems you use should be stated clearly.)

Question 7. (a) [20 marks] Use the residue theorem and a suitable contour integral to show that

$$\int_0^\infty \frac{x^2 + 1}{x^4 + 1} = \frac{\pi}{\sqrt{2}}$$

(You may use without proof the fact that if $z_0^4 + 1 = 0$ then

$$z^4 + 1 = (z - z_0)(z^3 + z_0z^2 + z_0^2z + z_0^3)$$

for all z).

(END)

M313 Final Exam 2006

Page 2 of 2