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Throughout this paper the symbols R,C stand for the real numbers and the
complex numbers respectively.

Question 1.

Question 2.

Question 3.

(a) [7 marks] Find all solutions to the equation z* = —4, expressing them in both
rectangular and polar forms. Indicate their position in the complex plane.

(b) [6 marks] State de Moivre’s Theoremn and use it to prove the identity
cos 30 = cos® 6 — 3 cosfsin? 6

(c) [7 marks] Describe the set of values of z for which |z — 2i| = 3 and show that

it is the same as the set of values of 2 for which

lz+33 3

(a) [4 marks] Let f(z) be a complex function. What is meant by saying that f is
differentiable at a point zg € C? What is meant by saying that f is analytic in an
open set § C C?

(b) [4 marks] Show that the function f(z) = |z|? is differentiable at zg = 0.

(c) [4 marks| State the Cauchy-Riemann equations for a complex function
f(2) = u(z,y) + iv(z,y) that is (complex) differentiable at a point 2 € C.

(d) [4 marks] Find u(z,y) and v(z,y) for the function f(z) = |2|? and deduce that
this function is not differentiable at any point 29 # 0.

(e) [4 marks] Let wu(z,y) = z(1 + 2y). Find a function wv(z,y) such that the
complex function f(z) = u(z,y) + iv(z,y) is analytic.

(a) [6 marks] Give the definition of the complex exponential function exp(z) = e*
(where z = z + iy) and show that it obeys the property

e?le®? = gl t22

(You may assume the basic properties of the real exponential function expz = €®
for z € R; any other results you use should be stated clearly)
Show that e* = €Z for all 2.

(b) [6 marks] (i) Explain the meaning of the complex logarithmic function log z.
Show that exp(log z) = z for every value of log z.

(if) What is meant by the principal value Logz for z € C? Show by
an example that it is not always true that Log(e?) = 2.

(c) {8 marks] Show that
(i) logi = (2n+ )mi (n=0,+1,42,...)
(i) log(—1 + v3i) =In2+2(n + $)m (n=0,+1,£2,..)
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Question 4.

Question 5.

Question 6.

Question 7.

(a) [4 marks] State without proof the Cauchy-Goursat Theorem and Cauchy’s
integral formula for an analytic function and its derivatives. [Ensure that you state
clearly the conditions needed to make your statements true.]

(b) [16 marks] Use the above to evaluate the following:

Z cosTz

(1) fc —————dz where C is the circle |z| = 2 traversed anticlockwise.
2% cosmz

(i) fo ——— pours —————dz where C is the circle |z| = 4 traversed anticlockwise.
2% cosmz

(i) fo =7 n ———=av; 4z where C is the circle |z| = 4 traversed anticlockwise.

(iv) Jo mdz where C is the circle |z — i| = 2 traversed anticlockwise.

(a) [10 marks] State without proof Liouville’s Theorem. Use it to prove the Fun-
damental Theorem of Algebra: any non-constant polynomial p(z) (i.e. p(2) = ap +
a1z + azz? + -+ -ay2™ with n > 1 and a, # 0) has at least one zero (i.e. there is at
least one point zg € C such that p(z) = 0).

(b) [10 marks] (i) State Taylor’s Theorem for a complex function f(z). Show that

1
the function f(z) = p is analytic in the disc |z — 1| < 1 and find its Taylor series
about the point 29 = 1.

1
(if) For z with |z — 1| > 1 let w = z—f—l Show that w — 1 = 7 S° that

zZ —

1 1 1
{w — 1| < 1. Show further that — = 1o and use the result of (i) to show that

the function f(2) = 1 has Laurent series
z
1 Z ( 1)n+1
(z=1)"

valid in the region D = {z: |2 - 1| > 1}.

(a) [10 marks] Let f(z) be a complex function and zp € C. What is meant by saying
that (i) zo is a singular point (or singularity) of f (ii) 2g is an isolated singularity
of f (iii) zo is a pole of order m (where m > 1).

(b) [10 marks] Describe all the poles, and find the corresponding residues, of
the following functions:

0 1) = 5o

(Any theorems you use should be stated clearly.)

z3+z

(ii) f(z)= GTi)e

(a) [20 fnarks] Use the residue theorem and a suitable coﬁtour integral to show that
/ i 2 B
0o ¢+l V2
(You may use without proof the fact that if 25 +1 =0 then
Al = (2 - )P w2t 4+ 22+ 2)
for all z).
(END)
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