UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2006

B.Sc. / B.Ed. / B.A.S.S.III

TITLE OF PAPER

: VECTOR ANALYSIS

COURSE NUMBER

: M312

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS :

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Part of a railway line (superimposed on a rectangular coordinate system) follows the line y = -x for $x \le 0$, then turns to reach the point (4,0) following a cubic curve. Find the equation of this curve if the track is *continuous*, *smooth*, and has *continuous curvature*. [8]
- (i) Find the scale h₁, h₂, and h₃ in cylindrical and in spherical coordinates.
 Hence find the volume element dV (in cylindrical and in spherical coordinates.
 - (ii) Show that the spherical coordinate system is orthogonal. [3]

QUESTION 2

- (a) Let $\mathbf{u}(x,y,z) = x\hat{\mathbf{i}} y\hat{\mathbf{j}}$ and $\mathbf{v}(x,y,z) = \frac{\mathbf{u}}{(x^2 + y^2)^{\frac{1}{2}}}$ be vectors in space.
 - (i) Compute the divergence and the curl of **u** and **v**. [6]
 - (ii) Find the flow lines of \mathbf{u} and \mathbf{v} . [8]
- (b) Determine the directional derivative of $\phi(x, y) = 100 x^2 y^2$ at the point (3,6) in the direction of the unit vector $\hat{\mathbf{u}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$. [6]

QUESTION 3

- (a) Find the tangent plane and the normal line to the surface $x^2y + xyz z^2 = 2$ at the point $P_0(1,1,3)$. [10]
- (b) Show that $\mathbf{n}(t) = -g'(t)\hat{\mathbf{i}} + f'(t)\hat{\mathbf{j}}$ and $-\mathbf{n}(t) = g'(t)\hat{\mathbf{i}} f'(t)\hat{\mathbf{j}}$ are both normals to the curve $\mathbf{r}(t) = f(t)\hat{\mathbf{i}} + g(t)\hat{\mathbf{j}}$ at the point (f(t), g(t)). Hence find $\hat{\mathbf{N}}$ for the curve $\mathbf{r}(t) = \sqrt{4 t^2}\,\hat{\mathbf{i}} + t\hat{\mathbf{j}}, \quad -2 \le t \le 2..$ [10]

QUESTION 4

- (a) By any method, find the integral of H(x, y, z) = yz over the part of the sphere $x^2 + y^2 + z^2 = 16$ that lies above the cone $z = \sqrt{x^2 + y^2}$. [7]
- (b) Find the work done in moving a particle in the counterclockwise direction once around the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ if the force field is given by $\mathbf{F} = (3x 4y)\hat{\mathbf{i}} + (4x + 2y)\hat{\mathbf{j}} 4y^2\hat{\mathbf{k}}$. [6]
- (c) Show that ydx + xdy + 4dz is exact and evaluate the integral

$$\int_{(2,2,2)}^{(3,4,0)} y dx + x dy + 4 dz.$$

QUESTION 5

- (a) Find out which of the fields given below are conservative. For conservative fields, find a potential function.
 - (i) $\mathbf{F} = (yz^2)\hat{\mathbf{i}} + (xz^2)\hat{\mathbf{j}} + (x^2yz)\hat{\mathbf{k}}$.

(ii)
$$\mathbf{F} = (e^x \sin y)\hat{\mathbf{i}} + (e^x \cos y + \sin z)\hat{\mathbf{j}} + (y \cos z)\hat{\mathbf{k}}.$$
 [12]

(b) Integrate $f(x, y, z) = 2x - 6y^2 + 2z$ over the line segment C joining the points (2,2,2) and (3,3,3).

QUESTION 6

- (a) By any method, find the outward flux of the field $\mathbf{F} = (6x^2 + 2xy)\hat{\mathbf{i}} + (2y + x^2z)\hat{\mathbf{j}} + (4x^2y^3)\hat{\mathbf{k}}$ across the boundary of the region cut from the first octant by the cylinder $x^2 + y^2 = 9$ and the plane z = 9. [10]
- (b) By any method, find the circulation of the field $\mathbf{F} = (x^2 + y^2)\hat{\mathbf{i}} + (x+y)\hat{\mathbf{j}}$ around the triangle with vertices (1,0), (0,1), (-3,0) traversed in the counterclockwise direction.

QUESTION 7

- (a) Verify the divergence theorem for $\mathbf{F} = (2x z)\hat{\mathbf{i}} + x^2y\hat{\mathbf{j}} xz^2\hat{\mathbf{k}}\hat{\mathbf{i}}$ taken over the region bounded by x = 2, x = 5, y = 2, y = 5, z = 2, z = 5. [10]
- (b) Verify Green's theorem in the plane for

$$\oint_C [2x\mathrm{d}x - (3y - x)\mathrm{d}y],$$

where C is the closed curve (described in the positive direction) of the region bounded by the curves $y = x^2$ and $y^2 = x$. [10]

END OF EXAMINATION