UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2006

BSC./B.Ed./B.A.S.S. II

TITLE OF PAPER:

Linear Algebra

COURSE NUMBER:

M220

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

1. This paper consists of SEVEN questions on FOUR pages.

2. Answer any FIVE questions.

3. Non-programmable calculators may be us

SPECIAL REQUIREMENTS:

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

(a) Find the adjoint of the matrix

$$A = \left(\begin{array}{ccc} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{array}\right)$$

(b) Calculate def (A) and if A is invertible find
$$\det(a^{-1})$$
 where $A=\begin{pmatrix}3&2&-1\\1&6&3\\2&-4&0\end{pmatrix}$

c) Find the co-ordinate vector of $(1,5,9)^T$ with respect to $(1,0,0)^T$, $(1,1,0)^T$, $(1,1,1)^T$ [20 marks]

Question 2

(a) By inspection find the inverse of

$$A = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

- (b) Define the notion of row equivalent matrices. Prove that if A is an invertible matrix and B is row equivalent to A, then B is also invertible.
 - (c) For which k does the following system have only the trivial solution?

$$kx_1 + x_2 - 3x_3 = 0$$

$$(k-1)x_1 + kx_2 + x_3 = 0$$

$$3x_1 + (k-1)x_2 + kx_3 = 0$$

[20 marks]

(a) Solve the following system

$$x_1 - 2x_2 + x_3 - 4x_4 = 1$$

$$x_1 + 3x_2 + 7x_3 + 2x_4 = 2$$

$$x_1 - 12x_2 - 11x_3 - 16x_4 = 5$$

(b) (i) Find the inverse of the matrix A and use A^{-1} to solve the system $A \cdot x = B$ where

$$A = \begin{pmatrix} 1 & 3 & 0 & 1 \\ 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix} \quad x \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -3 \end{pmatrix}$$

(ii) Find a finite sequence of elementary matrices E_1, E_2, \dots, E_n such that

$$E_n E_{n-1} \cdots E_2 E_1 A = I$$

[20 marks]

Question 4

(a) Which of the following transformations are linear?

(i)
$$T: P_2(x) \to P_1(x); T(ax^2 + bx + c) = 2ax + b$$

(i)
$$T: P_2(x) \to P_1(x); T(ax^2 + bx + c) = 2ax + b$$

(ii) $T: \mathbb{R}^3; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+1 \\ 2y \\ z \end{pmatrix}$

(b) Let
$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+z \\ y-z \end{pmatrix}$$
 be a linear transformation.
(i) Find the matrix A of $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to

$$S = \left\{ \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \right\}$$

(ii) Find the matrix A' of T with respect to the std basis

- (iii) Find a 3×3 transition matrix P from S to the std basis (iv) Show that $A' = p^{-1}AP$.

[20 marks]

(a) Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-2y \\ 2x+y \\ x+y \end{pmatrix}$
Find the matrix of T with respect to B_1 and B_2 where

$$B_1 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ and } B_2 \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \right\}$$

- (b) Which of the following sets of vectors span \mathbb{R}^4
- (i) $(1,0,0,1)^T$, $(0,1,0,0)^T$, $(1,1,1,1)^T$, $(1,1,1,0)^T$ (ii) $(1,2,1,0)^T$, $(1,1,-1,0)^T$, $(0,0,0,1)^T$

[20 marks]

Question 6

- (a) Let B_1 and B_2 be finite subsets of a vector space and let B_1 be a subset of B_2 Then show that
 - (i) if B_1 is linearly dependent, so is B_2
 - (ii) if B_2 is linearly independent, so is B_1
 - (b) Find the matrix of T with respect to the given basis

(i)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+2y+3z \end{pmatrix}$
 $B_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ and } B_2 \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\},$
(ii) $T: P_2(x) \to P_1(x)$; $T(T(x) = P'(x)$
 $B_1 = \{x^2, x, 1\}$ and $B_2 = \{x, 1\}$

P-n(x) – all polynomials of degree $\leq n$ and the zero polynomial

[20 marks]

- (a) Explain whether the following statement is true: if a triangular matrix (upper of lower) is invertible then its diagonal entries are all nonzero
 - (b) Determine whether the linear transformation T is one to one

(i)
$$T: \mathbb{R}^3 \to \mathbb{R}^3; \quad T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \end{pmatrix}$$

(ii) $T: \mathbb{R}^3 \to \mathbb{R}^2; \quad T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

(c) Prove that if a homogeneous system has more unknowns than the number of equations then it always has a non-trivial solution.

[20 marks]

****** END OF EXAMINATION *******