UNIVERSITY OF SWAZILAND

Final Examination 2006

Title of Paper

Mathematics for Scientists I

Program

BSc./B.Ed. II

Course Number

M 215

Time Allowed

Instructions

Three (3) Hours

.

- 1. This paper consists of seven (7) questions on TWO (2) pages.
- Answer any five (5) questions.
 Non-programmable calculators may be used.

Special Requirements: None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

(a) Evaluate the integral

$$\iint\limits_{\mathbb{R}} (x+2y)dx\,dy\,,$$

where R is the triangle bounded by the lines y = x, y = 1 - x, and the y-axis.

[8 marks]

(b) Evaluate the following limits:

(i)
$$\lim_{x \to 0} \frac{1 + \cos x}{\sin 2x}$$

(ii)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

[12 marks]

Question 2

(a) Find the first four nonzero terms of the Maclaurin's series of the function $f(x) = \frac{1}{1-x}$. Hence, deduce the first four nonzero terms of the Maclaurin's series of $g(x) = \frac{1}{1+x^2}$.

[10 marks]

(b) Locate all relative extrema and saddle points of $f(x) = x^2 + 2y^2 - x^2y$.

[10 marks]

Question 3

(a) Reverse the order of integration and evaluate the resulting integral:

$$\int_0^9 \int_{\sqrt{y}}^3 \sin x^3 \ dx \ dy.$$

[10 marks]

(b) Find the general solution of the differential equation

$$y^2 dx + (x^2 - 2xy) dy = 0$$
.

[10 marks]

Question 4

(a) Use differentials to find an approximate value of: 7.8 (26)^{1/3}.

[10 marks]

(b) Solve the differential equation: y''+y'+2y=0.

[10 marks]

Question 5

(a) Use the method of Lagrange multipliers to find extreme values of $f(x, y) = x^2 - y$, subject to the constraint $x^2 + y^2 = 25$.

[10 marks]

(b) Solve the following differential equation: $(3x^2 + y\cos x) dx + (\sin x - 4y^3) dy = 0$. [10 marks]

Question 6

(a) Let R be the region in the first quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$. Evaluate

$$\iint\limits_R e^{-(x^2+y^2)} dx \, dy.$$

[10 marks]

(b) For the function $f(x) = \sqrt{x+1}$ in [0, 3], verify that the hypotheses of the Mean Value Theorem are satisfied, and find the number c in (0, 3) whose existence is guaranteed by the theorem.

[10 marks]

Question 7

(a) Let $V = V\left(\frac{x}{z}\right)$. Deduce that $xV_x + yV_y + zV_z = 0$.

[10 marks]

(b) Given the vectors $\mathbf{a} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\mathbf{b} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, find a unit vector that is orthogonal to both \mathbf{a} and \mathbf{b} .

[10 marks]

********** *END OF EXAM* *********