UNIVERSITY OF SWAZILAND

Final Examination 2006

Title of Paper

Calculus II

Program

BSc./B.Eng./B.Ed./B.A.S.S. II

Course Number

M 212

Time Allowed

Three (3) Hours

Instructions

This paper consists of six (6) questions on THREE (3) pages.
 Answer ANY FIVE questions.
 Non-programmable calculators may be used.

Special Requirements: None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

(a) Find the length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ for $0 \le x \le 3$.

[9 marks]

(b) Change $(r,\theta)=(2,\frac{3\pi}{2})$ from polar to rectangular coordinates.

[3 marks]

(c) Change (x, y) = (-1, -1) from rectangular to polar coordinates.

[3 marks]

(d) Find an equation of the paraboloid $z = x^2 + y^2$ in spherical coordinates.

[5 marks]

Question 2

- (a) Sketch the curves represented by the equations:
 - (i) $x = t^2 2t, y = t + 1$

[7 marks]

(ii) $r = 4 + 4\cos\theta$

[7 marks]

(b) Show that the circumference of a circle with centre (0,0) and radius r is $2\pi r$. [6 marks]

Question 3

(a) Two objects travel in elliptical paths given by:

$$x_1 = 4\cos t$$
 , $y_1 = 2\sin t$

$$x_2 = 2\sin 2t$$
, $y_2 = 3\cos t$.

At what rate is the distance changing between the objects when $t = \pi$?

[10 marks]

(b) Find $\frac{dy}{dx}$ implicitly for the equation $(x+y)^3 + (x-y)^3 = x^4 + y^4$.

[4 marks]

3.(c) Given the ellipse with vertices $(\pm a, 0)$, foci $(\pm c, 0)$ and that $c^2 = a^2 - b^2$ for $a \ge b$ and the useful point $(0, \pm b)$, show that the equation of the ellipse is given by

 $\frac{x^2}{a} + \frac{y^2}{b} = 1$

if $d_1 + d_2 = 2a$, where d_1 and d_2 are the distances from a point of the ellipse to the foci.

[6 marks]

Question 4

(a) Show that the function $f(x,y) = e^{x \sin y}$ satisfies $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ [8 marks]

- (b) If $f(x, y) = e^{xy}$,
- (i) Find the rate of change of f at the point P(1,2) in the direction from P to Q(5,4)
 - (ii) What is the maximum rate of change?

[12 marks]

Question 5

- (a) The temperature at a point (x,y) on a metal plate in the x,y-plane is given by $T(x,y) = \frac{xy}{1+x^2+y^2}$ degrees centigrade.
- (i) Find the rate of change of the temperature at (1,1) in the direction of vector $\bar{a} = 2i j$.
- (ii) An ant at (1,1) wants to walk in the direction in which the temperature drops most rapidly. Find a unit vector in that direction.

[12 marks]

(b) Use polar coordinates to evaluate $\int \int (x^2 + y) dA$ over the region between $x^2 + y^2 = 1$ and $x^2 + y^2 = 5$.

[8 marks]

Question 6

(a) Evaluate the iterated integral $\int \int \int r \cos \theta \ dr \ d\theta \ dz$ over the region enclosed by $0 \le z \le 4$, $0 \le \theta \le \frac{\pi}{2}$, $0 \le r \le 2$.

8 marks

(b) Sketch the region whose area is represented by the integral $\int_0^2 \int_{y^2}^4 dx dy$. Then find another iterated integral using the order dy dx to represent the same area.

[12 marks]

Question 7

- (a) Locate the relative extrema and saddle points for $f(x,y) = 4xy x^4 y^4$. [9 marks]
- (b) Find the equation of the tangent plane and normal line to the surface $z=4x^3y^2+2y$ at point P(1, -2, 12).

[6 marks]

(c) Evaluate the area of the region bounded by the graphs $f(x) = \sin x$, $g(x) = \cos x$ between x = 0 and $x = \frac{\pi}{4}$.

[5 marks]

****** END OF EXAMINATION ******