UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2006

BSc. / BEd. / B.A.S.S. II

TITLE OF PAPER

: CALCULUS 1

COURSE NUMBER

: M 211

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

1. (a) State and prove Rolle's theorem

[10 marks]

(b) Show that for the function $f(x) = \alpha x^2 - \beta x - \phi$ with α , β and ϕ being constants, in any interval [a,b], the value of c guaranteed by the Mean Value Theorem is the mid-point $\frac{a+b}{2}$ of the interval.

QUESTION 2

2. (a) Sketch the graph of the following function. Indicate all intercepts, extrema, points of inflection and asymptotes where necessary.

$$f(x) = x^4 - 6x^2$$

[12 marks]

(b) Use Newton-Raphson Method to estimate one of the solutions of the following equation.

$$x^3 + 6 = 2x^2 + 5x$$

Take your $x_0 = 1.5000$. Stop the computation after the fourth iteration. Keep every value that you use correct to 4 decimal places in every part of your working. [8 marks]

QUESTION 3

3. Evaluate the following limits

(a) $\lim_{x \to 0} \frac{(x-5)^2 - 25}{x}$ [3 marks]

 $\lim_{x \to 0} \frac{\tan x - x}{x^3}$ [7 marks]

(c) $\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x$ [10 marks]

QUESTION 4

- 4. (a) Use the Washer Method to find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = x about the line y = -2. A sensible sketch of the area and the solid figure is necessary. [10 marks]
 - (b) Using the formula for the arc length with the appropriate sketch, show that the perimeter of a circle of radius a is:

$$C=2a\pi$$

[10 marks]

QUESTION 5

5. (a) Consider the following sequence

$$a_n = (2^n + 3^n)^{\frac{1}{n}}$$

i. Is this a decreasing, increasing or non-monotonic sequence? Prove your point. [5]

ii. State whether the sequence converges or diverges. If it converges, find the limit. [5]

(b) Show that

$$\lim_{n \to \infty} 2n \sin \frac{\pi}{n} = 2\pi$$

Every step of your method must be clearly shown

[10 marks]

QUESTION 6

6. (a) State (without proof) the following tests for convergence of series:

The divergence test [2 marks]

ii. The integral test [3 marks]

iii. The alternating series test [2 marks]

iv. The limit comparison test [3 marks]

(b) Show that the series:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

i. Converges absulutely for |x| < 1 [5 marks]

ii. Converges conditionally for x = 1 [3 marks]

iii. Diverges for |x| > 1 [2 marks]

QUESTION 7

7. Use an appropriate test to investigate the following series. Write down the name of the test used.

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ [4 marks]

(b) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ [4 marks]

(c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ [6 marks]

(d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{8n^2 - 5n}}$ [6 marks]