UNIVERSITY OF SWAZILAND

Final Examination 2006

Title of Paper

Introduction to Calculus

Program

BSc./B.Eng./B.Ed./B.A.S.S. I

Course Number

M 115

Time Allowed

Three (3) Hours

Instructions

:

:

- This paper consists of seven (7) questions on FOUR (4) pages.
 Answer any five (5) questions.
 Non-programmable calculators may be used.

Special Requirements: None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

- (a) Use the definition of the derivative to find f'(x) given that
 - $(i) \quad f(x) = x^3 + 4x$
 - (ii) $f(x) = \frac{1}{x}$.

[10 marks]

(b) Derive the reduction formula

$$\int \cos^n x \ dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \ dx,$$

and use it to evaluate

$$\int \cos^3 x \ dx.$$

[10 marks]

Question 2

- (a) Integrate the following
 - (i) $\int \cos^3 x \sin^4 x \ dx$

(ii)
$$\int \ln(x^2+1) \ dx$$

[10 marks]

(b) Find the general expression for $\frac{d^n y}{dx^n}$ when

$$y=(x+2)^{\frac{1}{3}}.$$

Here, n is a positive integer.

[10 marks]

(a) Evaluate the indefinite integral

$$\int \frac{2x+4}{x^3-2x} \ dx.$$

[10 marks]

(b) Find $\frac{dy}{dx}$ in each of the following

(i)
$$y = x^{\frac{3}{x}}$$

(ii)
$$y = (\sin x)^{2x}$$

[10 marks]

Question 4

(a) Evaluate the following limits

(i)
$$\lim_{x\to 0} \left(\frac{x^4 - 3x^3}{x^3} \right)$$

(ii)
$$\lim_{x \to -5} \frac{x+5}{\sqrt{x^2-25}}$$

[10 marks]

(b) Integrate the following

(i)
$$\int \frac{1}{\sqrt{9-25x^2}} \ dx$$

(ii)
$$\int \sin 3x \sin 5x \ dx$$

[10 marks]

(a) Show that the function

$$y = a\sin cx + b\cos cx,$$

where a, b and c are constants, is a solution of the equation

$$\frac{d^2y}{dx^2} + c^2y = 0.$$

[10 marks]

(b) Integrate the following

(i)
$$\int \frac{x^{1/2}}{x^{1/3} + x^{1/4}} \ dx$$

(ii)
$$\int \frac{d\theta}{1 + \sin \theta - \cos \theta} \ dx$$

[10 marks]

Question 6

(a) Find the area bounded by the curves y = -x and $y = x^2$.

[6 marks]

(b) Use Lebnitz's rule to find $\frac{d^4y}{dx^4}$ for

$$y = e^{2x} \sin 4x.$$

[6 marks]

(c) Given that $x = 3(\cos t - t \sin t)$ and $y = 3(\sin t + t \cos t)$, find $\frac{dy}{dx}$ in terms of t. [4 marks]

(d) Find
$$\frac{dy}{dx}$$
 for $x^4 - y^4 - 4xy = 7$.

[4 marks]

- (a) Integrate
 - (i) $\int \arcsin 2x \ dx,$
 - (ii) $\int x^3 \ln 2x \ dx.$

[10 marks]

(b) Find $\frac{dy}{dx}$ when $y = \tanh(e^{-2x})$.

[5 marks]

(c) Find the equation of the line tangent to the curve

$$f(x) = 4 - 3x + 3x^2$$

at the point (1,4).

[5 marks]

****** END OF EXAMINATION *******