UNIVERSITY OF SWAZILAND

Final Examination 2006

Title of Paper

Algebra, Trigonometry & Analytic Geometry

Program

BSc./B.Ed. I

Course Number

M 111

Time Allowed

Instructions

1. This paper consists of seven (7) questions on THREE (3) pages.

Answer any five (5) questions.
 Non-programmable calculators may be used.

Three (3) Hours

Special Requirements: None

THIS EXAMINATION PAPER MAY NOT BE OPENED UNTIL PERMISSION TO DO SO IS GRANTED BY THE INVIGILATOR.

Question 1

(a) (i) Use Cramer's rule to solve the following

$$2x + 8y + z = 10$$
$$3y - x + 2z = -2$$
$$4x + 4y - 5z = 4$$

[5 marks]

(ii) Use Gaussian Elimination to solve the following

$$x_1 + x_2 + x_3 = 3$$

 $4x_1 + 5x_2 + 3x_3 = 11$
 $5x_1 + 5x_2 + 2x_3 = 7$

[5 marks]

(b) Find the 6 distinct sixth roots of -64, leaving your answers in the form a + bi. [10 marks]

Question 2

(a) (i) Use synthetic division to find the quotient and remainder if

$$(x^3 - 7x^2 - 13x + 3)$$
 is divided by $(x + 2)$

[5 marks]

(ii) Use long division to find the quotient and remainder if

$$(4x^2 - x^2 - 6x - 9)$$
 is divided by $(2x^2 - x - 3)$

[5 marks]

(b) Prove the following identities

(i)
$$\sec x - \sin x \tan x = \cos x$$

[5 marks]

(ii)
$$(\tan \theta + \cot \theta)(\cos \theta + \sin \theta) = \csc \theta + \sec \theta$$

[5 marks]

Question 3

Give the centre, vertices, foci, eccentricity equations of the directrices and/or the equations of the asymptotes for the following curves

(a)
$$17 + 30y + 40x - 3y^2 - 4x^2 = 0$$

[10 marks]

(b)
$$4x^2 - 5y^2 - 16x + 10y + 31 = 0$$

[10 marks]

Question 4

- (a) (i) Find the equation of the parabola with focus F(-4,0) and directrix x=2. [5 marks]
 - (ii) Find the centre and radius of the following circle

$$x^2 + y^2 - 4x - 8y - 16 = 0.$$

[5 marks]

(b) Use mathematical induction to show the following

(i)
$$1+3+5+\cdots+(2n-1)=n^2$$

[5 marks]

(ii)
$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

[5 marks]

Question 5

(a) Solve for z and express in the form x + yi

$$z^2 - (3 - i)z + 4 = 0.$$

[10 marks]

- (b) If 5, x, y and 32 are in geometric progression, find the values of x and y.

 [5 marks]
- (c) Find the equation of the line through (1, -2) and parallel to the line through (-1, 4) and (2, 3). [5 marks]

Question 6

(a) Prove the following identity

$$\sin^6\theta + \cos^6\theta = 1 - \frac{3}{4}\sin^22\theta.$$

[5 marks]

(b) Find the fourth term in the expansion $\left(x^2 - \frac{2}{x}\right)^{-2}$

[5 marks]

(c) Evaluate and express in the form x + yi:

(i)
$$(2\sqrt{3}+i)(4\sqrt{3}-2i)$$

[5 marks]

(ii)
$$\frac{2+3i}{-1+3i}$$

[5 marks]

Question 7

(a) Solve for x:

$$\cos 2x + \cos x + 1 = 0.$$

[5 marks]

(b) If the matrix A is given by

$$A = \left(\begin{array}{ccc} 1 & 2 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 2 \end{array}\right),$$

find the determinant of A and its inverse A^{-1} .

[7 marks]

- (c) Given that $\sin \alpha = \frac{-3}{5}$ and $\cos \alpha = \frac{4}{5}$ find $\sin 2\alpha \tan 2\alpha$.
- [4 marks]

(d) Compute

$$\begin{pmatrix} 1 & 2 & 2 \\ 7 & 3 & 4 \\ 0 & 5 & -6 \end{pmatrix} + \begin{pmatrix} 9 & 8 \\ 5 & 4 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} 3 & -2 & 4 \\ 2 & 1 & 5 \end{pmatrix}.$$
 [4 marks]

****** END OF EXAMINATION ******