THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Supplementary Examination 2005

M431 METRIC SPACES

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1. (a)[10 marks] What is meant by saying that (X, d) is a metric space? Let d be the function defined on \mathbb{R}^2 by

$$d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

where $x=(x_1,x_2)$ and $y=(y_1,y_2)$. Prove carefully that (\mathbb{R}^2,d) is a metric space.

(b) [10 marks] Describe the uniform metric and the L_2 -metric on the set C[a, b] of continuous functions defined on the interval [a, b].

Let x(t) = t and $y(t) = t^2$ for $-1 \le t \le 1$. Calculate the distance between x and y in C[-1,1]

- (i) in the uniform metric;
- (ii) in the L_2 -metric.
- **Question 2.** (a) [2 marks] Let (X,d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is convergent?
 - (b) [4+4 marks] Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 .

(i)
$$x_n = \left(\frac{n^2+1}{2n^2+1}, \sin\left(\left(2n + \frac{1}{n}\right)\pi\right)\right)$$
 (ii) $x_n = (2^{-n}, \cos(n\pi))$

(c) [10 marks] Explain what is meant by pointwise convergence of a sequence (x_n) in C[a,b]. Show that if (x_n) converges in C[a,b] with the uniform metric then (x_n) converges pointwise to the same limit.

Let x_n in C[0,1] be defined by

$$x_n(t) = \left\{ egin{array}{ll} 1 - (n-1)t & ext{if} & 0 \leq t \leq rac{1}{n} \ rac{1-t}{n-1} & ext{if} & rac{1}{n} \leq t \leq 1 \end{array}
ight.$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \begin{cases} 1 & \text{if} \quad t = 0 \\ 0 & \text{if} \quad 0 < t \le 1 \end{cases}$$

Deduce that (x_n) is not convergent in C[0,1] in the uniform metric.

- Question 3. (a) [5 marks] Define what is meant by
 - (i) a Cauchy sequence in a metric space
 - (ii) a complete metric space.

Give an example of an incomplete metric space.

(b) [6 marks] Let (X, d) be a metric space with the discrete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete.

(c) [9 marks] Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem.

Show that the mapping $f: [-1,1] \rightarrow [-1,1]$ defined by

$$f(x) = \frac{1}{6}(x^3 - x^2 + 3)$$

is a contraction, and deduce that there is a unique solution to the equation $x^3 - x^2 - 6x + 3 = 0$ in the interval [-1, 1]. (State any theorem you use to show that f is a contraction.)

- Question 4. (a) [6 marks] Let (X,d) be a metric space and let $A \subseteq X$. What is meant by saying that A is closed? Show that if $(A_i)_{i \in I}$ is any collection of closed sets then the intersection $\bigcap_{i \in I} A_i$ is also closed.
 - (b) [8 marks] What is meant by a closed ball B[a,r] in a metric space? Show that a closed ball is closed. By drawing a diagram or otherwise describe the closed ball B[a,2] in \mathbb{R}^2 , where a=(3,3)
 - (i) with the usual metric;
 - (ii) with the Chicago metric.
 - (c) [6 marks] Which of the following sets A is closed in the given metric space X.
 - (i) $X = \mathbb{R}^2$ (with the usual metric); $A = \{(a, b) : a + b = 0\}$
 - (ii) X = C[0,1] with the uniform metric; $A = \{x : x(\frac{1}{2}) < 2\}$
 - (iii) $X = \mathbb{R}$ with the usual metric; $A = \mathbb{Z}$.

- **Question 5.** (a) [10 marks] Let $f: X \to Y$, where X and Y are metric spaces. Give the definition of f is continuous in terms of convergence of sequences. Show that if f is continuous then
 - (i) if U is an open subset of Y then $f^{-1}(U)$ is an open subset of X (say which definition of open you are using);
 - (ii) if $g:Y\to Z$ is also continuous, where Z is another metric space, then $g\circ f:X\to Z$ is continuous.
 - (b) [4 marks] Suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are both continuous. Show that the function $h : \mathbb{R} \to \mathbb{R}^2$ defined by

$$h(x) = (f(x), g(x))$$

is continuous.

(c) [6 marks] Let f be the function $f:C[-1,1]\to\mathbb{R}$ defined for $x\in C[-1,1]$ by

$$f(x) = \max\{|x(t)| : -1 \le t \le 1\}$$

Show that f is not continuous with respect to the L_1 metric on C[-1,1] (and the usual metric on \mathbb{R}) by considering the functions $x_n(t)$ given by

(**Hint** Sketch the functions $x_n(t)$ and consider their limit in the L_1 metric.)

- **Question 6.** (a) [4 marks] Let X be a metric space and $A \subseteq X$. What is meant by saying that (i) A is bounded and (ii) A is compact?
 - (b) [6 marks] Show that a compact set is closed and bounded.
 - (c) [4 marks] Show that if X is a metric space with the discrete metric then any infinite set $A \subseteq X$ is closed and bounded but not compact.
 - (d) [6 marks] Which of the following sets is compact?
 - (i) $\{(x,y): -1 \le x \le y \le 1\}$ in \mathbb{R}^2 (with the usual metric)
 - (ii) $\mathbb{Q} \cap [-1, 1]$ in \mathbb{R} (with the usual metric).

Give reasons for your answers.

- Question 7. (a) [3 marks] Let d_1 and d_2 be metrics on a set X. What is meant by saying that the metrics d_1 and d_2 are equivalent.
 - (b) [8 marks] Suppose that there are positive constants k, K such that

$$kd_1(x,y) \le d_2(x,y) \le Kd_1(x,y)$$

for all $x, y \in X$. Show that if (x_n) is convergent in d_1 then it is convergent in d_2 and deduce that d_1 and d_2 are equivalent.

- (c) [4 marks] Show that on \mathbb{R}^2 the usual (Euclidean) metric and the max metric are equivalent.
- (d) [5 marks] Let d_1 and d_2 be equivalent metrics on X. Using the characterization of continuous functions in terms of open sets (which you should state clearly but need not prove), show that if $f: X \to X$ is continuous in the metric d_1 then it is continuous in the metric d_2 .

(END)