THE UNIVERSITY OF SWAZILAND

Department of Mathematics

Supplementary Examination 2005

M423 ABSTRACT ALGEBRA II

Date

Three (3) hours

INSTRUCTIONS

- 1. This paper contains SEVEN questions.
- 2. Answer any FIVE questions.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- **Question 1.** (a)[7 marks] Find the highest common factor of 10, 113 and 1, 445 and express it in the form 10113s + 1445t
 - (b) [6 marks] Show that for any integers a, b

$$(a, 2a + b) = (a, b)$$

- (c) [7 marks] What is meant by saying that a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible? State Eisenstein's test for irreducibility, and use it to show that $21 + 7x + 35x^2 14x^4 17x^5$ is irreducible in $\mathbb{Q}[x]$.
- Question 2. [5 + 5 + 5 + 5 marks] Which of the following is a ring (with the usual operations)? In each case either prove that it is a ring or explain why it is not.
 - (i) the set of 2 \times 2 matrices of the form $\begin{pmatrix} a & b \\ c & 2d \end{pmatrix}$ where a,b,c,d are · integers;
 - (ii) the set of rational numbers of the form $\frac{a}{b}$ where a, b are integers with b odd;
 - (iii) the set of all polynomials in $\mathbb{Q}[x]$ of degree at least 3.
 - (iv) the set $\mathbb{Z}[\sqrt{-7}] = \{a + b\sqrt{-7} : a, b \in \mathbb{Z}\}$

(You may assume that \mathbb{C} and $M_2(\mathbb{R})$, the set of all 2×2 matrices are both rings.)

- Question 3. (a) [4 marks] What is (i) an integral domain; (ii) a field? Give an example of an integral domain that is not a field.
 - (b) [4+4+4+4 marks] Which of the following is a field?
 - (i) $\{a+b\sqrt{19}: a,b\in\mathbb{Q}\};$
 - $\text{(ii) } \{\frac{a}{2^b}: a,b \in \mathbb{Z}\};$
 - (iii) $\mathbb{Z}_{\mathbf{n}}$;
 - (iv) Z₁₂.

In each case either prove that the set is a field or explain why it is not. (You may assume that \mathbb{R} is a field and that \mathbb{Z}_n is a ring for any n.)

- **Question 4.** (a) [6 marks] Show that if D is a field then the ring D[x] of polynomials in x with coefficients in D is an integral domain but not a field.
 - (b) [7 marks] The polynomial $x^4 + x^3 + 2x^2 + x + 1$ has a linear factor in $\mathbb{Z}_3[x]$. Find its factorization into irreducible polynomials in $\mathbb{Z}_3[x]$.
 - (c) [6 marks] Show that $\alpha = \sqrt{2 \sqrt{5}}$ is algebraic over \mathbb{Q} . Find the minimum polynomial and the degree of α (i) over \mathbb{R} ; (ii) over \mathbb{Q} .

CONT ...

- Question 5. (a) [2 marks] Define each of the following for u, r in a ring with unity.
 - (i) u is a unit;
 - (ii) r is irreducible.
 - (b) [6 marks] Describe all the units in the following rings:
 - (i) **Q**;
- (ii) Z₈
- (c)[3 marks] Define the norm $N(\alpha)$ of an element $\alpha \in \mathbb{Z}[i]$ and state without proof its main properties.
- (d) (i) [3 marks] Show that ± 1 and $\pm i$ are the only units in $\mathbb{Z}[i]$.
 - (ii) [3 marks] Show that 3 and 1 + 4i are irreducible in $\mathbb{Z}[i]$.
- (iii) [3 marks] Show that 17 is reducible in $\mathbb{Z}[i]$ and find its factorization into irreducibles.
- **Question 6.** (a) [7 marks] Let R and S be rings. What is meant by
 - (i) an ideal of R
 - (ii) a ring homomorphism $\theta: R \to S$.

Define the kernel $\ker\theta$ of a ring homomorphism $\theta:R\to S$ and show that it is an ideal of R.

- (b) [7 marks] Which, if any, of the following is a ring homomorphism? Find the kernel for those that are homomorphisms.
 - (i) $\theta: \mathbb{Z} \to \mathbb{Z}_2$ defined by $\theta(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$;
 - (ii) $\theta: \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by $\theta(A) = \det A$.
- (c) [6 marks] Let $\varphi : \mathbb{Z}[x] \to \mathbb{Z}$ be the homomorphism defined by $\varphi(f) = f(-2)$. Show that $\ker \varphi = \{f \in \mathbb{Z}[x] : f \text{ is divisible by } x + 2\}$.
- **Question 7.** (a) [3 marks] Show that the polynomial $1 + x^2$ is irreducible in $\mathbb{Z}_3[x]$.
 - (b) Suppose that E is an extension field of \mathbb{Z}_3 and $\alpha \in E$ is a root of $1 + x^2$.
 - (i) [2 marks] What is meant by the field $\mathbb{Z}_3(\alpha)$?
 - (ii) [2 marks] What is meant by the minimum polynomial of α over \mathbb{Z}_3 ? Explain why this is $1 + x^2$.
 - (iii) [6 marks] Show that every element of $\mathbb{Z}_3(\alpha)$ can be written uniquely as $a + b\alpha$ with $a, b, c \in \mathbb{Z}_3$.
 - (iv) [7 marks] Draw up the multiplication table for $\mathbb{Z}_3(\alpha)$ and identify the multiplicative inverse of each non-zero element.

(Any theorems you use about divisibility and HCFs in $\mathbb{Z}_3[x]$ should be stated clearly but not proved.)

(END)