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INSTRUCTIONS
1. This paper contains SEVEN questions.
2. Answer any FIVE questions.
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Question 1.

Question 2.

Question 3.

Question 4.

(a){ 7 marks] Find the highest common factor of 10113 and 21671 and express
it in the form 10113s + 21671t

(b)[6 marks] Show that for any integers a, b
(3a + 2b,a + b) = (a,b)

(¢) [7 marks] What is meant by saying that a polynomial f(z) € Q[z] is
irreducible? State Eisenstein's test for irreducibility, and use it to show that
33 + 15z + 212° — 1227 + 92° — 14z is irreducible in Q[z].

[ § + 5§ + 5§ +5 marks] Which of the following is a ring (with the usual
operations)? For each either prove that it is a ring or explain why it is not.

(i) the set of 2 x 2 matrices of the form

2a b
c d
where a, b, ¢, d are integers;

(ii) the set of rationals of the form % where a, b are integers and 3 1 b;

(iii) the set of all polynomials in Rz] of degree greater than two;
(iv) the set Z[i] = {a + bi: a,b € Z}.
(You may assume that C and M,(R), the set of all 2 x 2 matrices are both
rings.)

(a) [ 7 marks] What is (i) an integral domain; (ii) a field 7 Show that a field
is an integral domain. Give an example of an integral domain that is not a
field.

(b) [ 6 marks] Which of the following rings is a field?  Which is an integral
domain? Give reasons for your answers.

(i) R[z] (i) Q] ={a+bi:a,beQ}
(¢) [ 7 marks] Explain what is meant by the ring Z, where n > 1 is an
integer. Show that Z, is a field if and only if n is prime.
(a)[8 marks] Define each of the following for u,r in a ring with unity.

(i) u is a unit; (i1) r is prime; (iii) r is irreducible.

(b) [8 marks] Show that in any integral domain a prime is irreducible.

(c) [6 marks] Let a=15+3i and b= 1+ 27 in the ring Z[:] of Gaussian
integers. Find g and r in Z[s] such that

a=gb+r

with N{r) < N(b), where N(m + ni) = m? + n®
(d) [8 marks] Outline the main steps in the proof that an irreducible

element in Z[i] is prime.
CONT ...
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Question 5.

Question 6.

Question 7.

(a)[9 marks] Let d be a square free integer; define the norm N(a) of an
element o € Z[v/d]. Show that

(i) N{af) = N{a)N(8); (ii) o is a unit if and only if N(a) = 1.
(b) (i} [8 marks] Show that +1 are the only units in Z[/=3].

(ii) [6 marks] Show that (1 £ +/=3) and 2 are irreducible in Z[/=3].

(iii) [3 marks] By considering the product (1 ++/—3)(1 ~ +/—3) show
that Z[+/—3] does not have the property of unique factorisation into irre-
ducibles.
(a) [18 marks] Let R and S be rings. What is meant by

(i) an ideal of R;

(i) a ring homomorphism 6 ; R — S7

(iil) a ring isomorphism 6 : R — S?

Define the kernel ker@ of a ring homomorphism # : R — S and show
that it is an ideal of R.

Show that a ring homomorphism € : R — § is an isomorphism if and only
if it is surjective and ker 8 = {0}.

(b) [7 marks] Which, if any, of the following is a ring homomorphism? Find
the kernel for those that are homomorphisms.

(i) 0 : R[r]—> R defined by #(ag + a1 + a22® + - -+ + 6nZ") = ao + a1 +
az + -+ Qg;

(i) 0 : My(R) = R defined by 6(( ¢ ° V) =ad—bc=det [  ©
c d c d
(a) (i) {3 marks] Show that the polynomial 1+ z + z® is irreducible in Z,[z].
(b) Suppose that E is an extension field of Z, and a € E is aroot of 1+z+x°.
(i) [2 marks]) What is meant by the field Zy(a)?

(i1) [2 marks] What is meant by the minimum polynomial of a over Z,7
Explain why this is 1 + = + 23,

(iii) [6 marks] Show that every element of Z,(a) can be written uniquely
as a + ba + ca® with a,b,c € Zo. )

(iv) [7 marks] Draw up the multiplication table for Z,(a) and identify the
multiplicative inverse of each non-zero element.

(Any theorems you use about divisibility and HCF's in Zs[z] should be stated
clearly but not proved.)

(END)

M423 Final Exam 2005 Page 2 of 2



