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Instructions

This paper consists of seven questions.

Answer any five questions.
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QL.

Classify according to type and determine the characteristics of:
1. Upp — Z2yuy, = 0, (y > 0,7 # 0)
2. €% Ugy + 26" Vg, + eMuy, =0

3. 2uyy ~ dugy — Buyy +u, = 0.

20 [marks]
Q2.
Transform the equation us; — 4tz +4u,, = €¥ into canonical form and hence
find its general solution. 20 [marks]
Q3.

The non-homogeneous wave equation is given by:
Uy — CiUgy = h(Z,1); ~00 < T < 00, > 0

u(z,0) = f(z), u(z,0) = g(z), —00 < z < 0.
Using the characteristic triangle, show that this equation has solution:
1 1 ot 1
u(z,t) = {f(z+ct) + f(z - ct)} + 5 f g(s)ds + o / /A h(z, t)dA.
Note: Green’s theorem: If M and N have continuous partial derivatives in
an open region containing A, then _/;de + Ndy = [_[A (N, — M,) dA,

where C' is the boundary of A.
20 [marks]

Q4.
The vibrating string problem is described by the equation:

Uy — CUpe = 0,0 <z < [, >0,

'“'(1:: 0) = f(x)aut(xa 0) = g(-’L‘),O <z< E-;
u(0,t) = u(l,t) = 0,t > 0.



Use the mothod of separation of variables to derive the solution:

o0
u(z,t) = ) _{ancos E?Et + by sin zL%ﬁ} sin ”_';””_
n=1

Derive the formulae for a,, and b,,. Hint: Only the case o < 0, where ¢ is the

separation constant gives nontrivial solutions.
20 [marks]

Q5.

Consider the temperature distribution u(z,t) within a homogeneous bar of
length [ described by the following equations:

u(z,0) = f(z),0 <z <,
u(0,t) = u(l,t) =0,t > 0.

Use the method of separation of variables to derive the solution:

X 8l . nmT
ulz,t) = 3 ane” # *sin -
n=1

Derive the formula for a,. Hint: Since the boundary conditions are homoge-
neous at z = 0 and z = [ , the separation constant is taken to be —a?, where
o is a positive constant.

[20 marks]

Q6
(a) Consider the temperature distribution u(z, ¢} within a homogeneous bar
of length [ described by the following equations:

U = kg, 0 <z <I,t >0,

u(z,0) = f(x),0 <z </,
U(O,t) = T1,'u.(l,t) - Tg,t 2 0.



Assume the solution has the form u(z,t) = v(z) + w(z,t), where v(z) is a
steady state temperature distribution and hence solve the partial differential
equation. Show that;

2 z . MAT
Ap = I./D {f(.’l?) — (Tg - Tl)-l— — Tl} 51 "l—dﬂi

Note: You may assume the resut! in Q5.
(b) Apply your solution to the problem:

Up = Uy, 0 < 2 < 30,£ >0
u(0,1) = 20,u(30,¢{) =50,t > 0
u(z,0) =60 —2z,0 < z < 30.

[20 marks]

Q7. Laplace’s equation in a circle of radius a with a Dirichlet boundary
condition is given by:

1 1
urr+;ur+'ﬁu¢¢=0:0<r<av_'”<¢57T

u(a:¢) = f(qs):_ﬂ. < ¢S 7,

where ¢ is the angular coordinate. Show that this equation has the solution:

+ E r"(Ap cosng + B, sinng).

n=0

ulr,$) =

Derive formulae for Ag, A,, B,. Hint: The case ¢ < 0, where o is the sepa-
ration constant has no nontrivial solutions.
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